首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The synthesis of poly(tert‐butyl acrylate‐block‐vinyl acetate) copolymers using a combination of two living radical polymerization techniques, atom transfer radical polymerization (ATRP) and reversible addition‐fragmentation chain transfer (RAFT) polymerization, is reported. The use of two methods is due to the disparity in reactivity of the two monomers, viz. vinyl acetate is difficult to polymerize via ATRP, and a suitable RAFT agent that can control the polymerization of vinyl acetate is typically unable to control the polymerization of tert‐butyl acrylate. Thus, ATRP was performed to make poly(tert‐butyl acrylate) containing a bromine end group. This end group was subsequently substituted with a xanthate moiety. Various spectroscopic methods were used to confirm the substitution. The poly(tert‐butyl acrylate) macro‐RAFT agent was then used to produce (tert‐butyl acrylate‐block‐vinyl acetate). © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 7200–7206, 2008  相似文献   

2.
This study deals with control of the molecular weight and molecular weight distribution of poly(vinyl acetate) by iodine‐transfer radical polymerization and reversible addition‐fragmentation transfer (RAFT) emulsion polymerizations as the first example. Emulsion polymerization using ethyl iodoacetate as the chain transfer agent more closely approximated the theoretical molecular weights than did the free radical polymerization. Although 1H NMR spectra indicated that the peaks of α‐ and ω‐terminal groups were observed, the molecular weight distributions show a relatively broad range (Mw/Mn = 2.2–4.0). On the other hand, RAFT polymerizations revealed that the dithiocarbamate 7 is an excellent candidate to control the polymer molecular weight (Mn = 9.1 × 103, Mw/Mn = 1.48), more so than xanthate 1 (Mn = 10.0 × 103, Mw/Mn = 1.89) under same condition, with accompanied stable emulsions produced. In the Mn versus conversion plot, Mn increased linearly as a function of conversion. We also performed seed‐emulsion polymerization using poly(nonamethylene L ‐tartrate) as the chiral polyester seed to fabricate emulsions with core‐shell structures. The control of polymer molecular weight and emulsion stability, as well as stereoregularity, is also discussed. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

3.
The living free radical polymerizations of three “less activated” monomers (LAMs), vinyl acetate, N‐vinylcarbazole, and N‐vinylpyrrolidone, were successfully achieved in the presence of a disulfide, isopropylxanthic disulfide (DIP), using 2,2′‐azoisobutyronitrile (AIBN) as the initiator. The living behaviors of polymerizations of LAMs are evidenced by first‐order kinetic plots and linear increase of molecular weights (Mns) of the polymers with monomer conversions, while keeping the relatively low molecular weight distributions, respectively. The effects of reaction temperatures and molar ratios of components on the polymerization were also investigated in detail. The polymerization proceeded with macromolecular design via interchange of xanthate process, where xanthate formed in situ from reaction of AIBN and DIP. The architectures of the polymers obtained were characterized by GPC, 1H NMR, UV–vis, and MALDI‐TOF‐MS spectra, respectively. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

4.
A cyclic selenium‐based reversible addition‐fragmentation chain transfer (RAFT) agent, 5,5‐dimethyl‐3‐phenyl‐2‐selenoxo‐1,3‐selenazolidin‐4‐one (RAFT‐Se), was synthesized and utilized in the RAFT polymerizations of vinyl acetate (VAc). Its analog, 5,5‐dimethyl‐3‐phenyl‐2‐thioxothiazolidin‐4‐one (RAFT‐S), was also used in RAFT polymerizations for comparison under identical conditions. The RAFT polymerizations of VAc with RAFT‐Se were moderately controlled evidenced by the increase of molecular weights with conversion, despite the slightly high Mw/Mn (less than 1.90), whereas the molecular weights were poorly controlled in the presence of RAFT‐S (2.00 < Mw/Mn < 2.30). Thanks to its unusual cyclic structure of RAFT‐Se, one or more RAFT‐Se species was incorporated into the resultant poly(VAc) as revealed by the results of cleavage of polymer and atomic absorption spectroscopy. Considering the biorelated functions of both poly(VAc) and Se element, this work undoubtedly provided a successful methodology of how to incorporate high content of Se into a molecular weight controlled poly(VAc). © 2013 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

5.
A series of new reversible addition–fragmentation chain transfer (RAFT) agents with cyanobenzyl R groups were synthesized. In comparison with other dithioester RAFT agents, these new RAFT agents were odorless or low‐odor, and this made them much easier to handle. The kinetics of methyl methacrylate radical polymerizations mediated by these RAFT agents were investigated. The polymerizations proceeded in a controlled way, the first‐order kinetics evolved in a linear fashion with time, the molecular weights increased linearly with the conversions, and the polydispersities were very narrow (~1.1). A poly[(methyl methacrylate)‐block‐polystyrene] block copolymer was prepared (number‐average molecular weight = 42,600, polydispersity index = 1.21) from a poly(methyl methacrylate) macro‐RAFT agent. These new RAFT agents also showed excellent control over the radical polymerization of styrenics and acrylates. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 1535–1543, 2005  相似文献   

6.
In this work, high molecular weight polyvinyl acetate (PVAc) (Mn,GPC = 123,000 g/mol, Mw/Mn = 1.28) was synthesized by reversible addition‐fragmentation chain transfer polymerization (RAFT) under high pressure (5 kbar), using benzoyl peroxide and N,N‐dimethylaniline as initiator mediated by (S)‐2‐(ethyl propionate)‐(O‐ethyl xanthate) (X1) at 35 °C. Polymerization kinetic study with RAFT agent showed pseudo‐first order kinetics. Additionally, the polymerization rate of VAc under high pressure increased greatly than that under atmospheric pressure. The “living” feature of the resultant PVAc was confirmed by 1H NMR spectroscopy and chain extension experiments. Well‐defined PVAc with high molecular weight and narrow molecular weight distribution can be obtained relatively fast by using RAFT polymerization at 5 kbar. © 2015 Wiley Periodicals, Inc. J. Polym. Sci. Part A: Polym. Chem. 2015 , 53, 1430–1436  相似文献   

7.
Solution and aqueous miniemulsion polymerizations of vinyl chloride (VC) mediated by (3,3,4,4,5,5,6,6,7,7,8,8,8‐tridecafluorooctyl‐2‐((ethoxycarbonothioyl)thio) propanoate) (X1) were studied. The living characters of X1‐mediated solution and miniemulsion polymerizations of VC were confirmed by polymerization kinetics. The miniemulsion polymerization exhibits higher rate than solution polymerization. Final conversions of VC in the reversible addition‐fragmentation chain transfer (RAFT) miniemulsion polymerization reach as high as 87% and are independent of X1 concentration. Initiation process of X1‐mediated RAFT miniemulsion polymerization is controlled by the diffusion–adsorption process of prime radicals. Due to the heterogeneity of polymerization environments and concentration fluctuation of RAFT agent in droplets or latex particles, PVCs prepared in RAFT miniemulsion exhibit relatively broad molecular weight distribution. Furthermore, chain extensions of living PVC (PVC‐X) with VC, vinyl acetate (VAc), and N‐vinylpyrrolidone (NVP) reveal that PVC‐X can be reinitiated and extended, further confirming the living nature of VC RAFT polymerization. PVC‐b‐PVAc diblock copolymer is successfully synthesized by the chain extension of PVC‐X in RAFT miniemulsion polymerization. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 2092–2101  相似文献   

8.
Reversible addition–fragmentation chain transfer (RAFT) polymerization has emerged as one of the important living radical polymerization techniques. Herein, we report the polymerization of di(ethylene glycol) 2‐ethylhexyl ether acrylate (DEHEA), a commercially‐available monomer consisting of an amphiphilic side chain, via RAFT by using bis(2‐propionic acid) trithiocarbonate as the chain transfer agent (CTA) and AIBN as the radical initiator, at 70 °C. The kinetics of DEHEA polymerization was also evaluated. Synthesis of well‐defined ABA triblock copolymers consisting of poly(tert‐butyl acrylate) (PtBA) or poly(octadecyl acrylate) (PODA) middle blocks were prepared from a PDEHEA macroCTA. By starting from a PtBA macroCTA, a BAB triblock copolymer with PDEHEA as the middle block was also readily prepared. These amphiphilic block copolymers with PDEHEA segments bearing unique amphiphilic side chains could potentially be used as the precursor components for construction of self‐assembled nanostructures. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 5420–5430, 2007  相似文献   

9.
A photoinitiation process was investigated to develop a rapid and well‐controlled RAFT polymerization method applied to vinyl acetate (VAc) using methyl (ethoxycarbonothioyl)sulfanyl acetate (MESA) and bis(2,4,6‐trimethylbenzoyl)phenylphosphine oxide as the RAFT agent and photoinitiator, respectively. MESA was selected as the photochemically inert RAFT agent to minimize photolysis of the thiocarbonylthio groups during polymerization. Poly(vinyl acetate) with a prespecified well‐controlled molecular weight (MW) and a narrow MW distribution was successfully synthesized. The polymerization reaction proceeded as a living polymerization and was remarkably rapid compared with approaches that use thermally initiated processes with a very short induction period. A detailed kinetic study of the mechanism underlying the polymerization reaction, however, revealed that the chain ends containing xanthate moieties were not perfectly stable upon UV‐irradiation, and they generated radicals via homolytic cleavage. This reaction appeared to proceed by a combination of a degenerative transfer RAFT mechanism and a dissociation‐combination mechanism. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

10.
Reversible addition‐fragmentation chain‐transfer (RAFT) polymerization has been known as a convenient method for the synthesis of polymers of designed molecular structures. Of particular interest are bifunctional or multifunctional chain‐transfer agents (CTAs) which could be employed in the development of advanced materials via RAFT polymerization. In the present study, four bifunctional 2‐(alkoxycarbonothioylthio) RAFT CTAs with ? COOH functionalities containing methoxy, ethoxy, isopropoxy, and octyloxy groups, respectively, were synthesized and characterized by FTIR and NMR spectroscopy. Polymerizations of vinyl acetate using these CTAs exhibited increased molecular weight with consumption of monomer and relatively narrow dispersities, indicative of living polymerization behavior. The effect of the concentration of 2‐(ethoxycarbonothioylthio) acetic acid on the polymerization was examined, revealing that higher concentration of CTA led to lower molecular weight and narrower dispersity. As an example of the application of the synthesized bifunctional CTAs, TiO2‐poly(vinyl acetate) (PVAc) nanocomposites were synthesized via a one‐pot process and characterized by TGA, DSC, TEM, and affinity test, suggesting attachment of PVAc onto the nano‐TiO2 particles. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 606–618  相似文献   

11.
12.
Four different xanthates containing either phosphonate or bisphosphonate moieties were synthesized with high degree of purity. These xanthates were used as chain transfer agents (CTA) in the RAFT/MADIX polymerization of vinyl acetate (VAc) to prepare end‐capped poly(VAc). The rate of VAc polymerization in the presence of these new CTAs was shown to be similar to that obtained with conventional xanthate, that is, (methyl ethoxycarbonothioyl) sulfanyl acetate. Good control of VAc polymerization was also obtained since the molecular weight increased linearly with monomer conversion for each phosphonate‐containing xanthate. Low‐PDI values were obtained, ascribed to efficient exchange during RAFT/MADIX polymerization. Cex value was therefore calculated to about 25, based on RAFT/MADIX of VAc in the presence of rhodixan A1/VAc adduct. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

13.
The reversible addition‐fragmentation chain transfer (RAFT) copolymerization of styrene and 4‐vinylbenzyl dithiobenzoate, a RAFT‐based inimer (initiator‐monomer), is described. Controlled polymerization was achieved in bulk conditions using thermal initiation at 110 °C to give arborescent polystyrene (arbPSt). The number‐average molecular weights of the polymers increased linearly with conversion and were much higher than theoretically calculated for a linear polymerization, reaching Mn = 364,000 g/mol with Mw/Mn = 2.65. Branching analysis by NMR showed an average of 3.5 branches per chain. SEC data, which were similar to those measured in arborescent polyisobutylene, supported the architectural analysis. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 7621–7627, 2008  相似文献   

14.
Phenacyl morpholine‐4‐dithiocarbamate is synthesized and characterized. Its capability to act as both a photoiniferter and reversible addition fragmentation chain transfer agent for the polymerization of styrene is examined. Polymerization carried out in bulk under ultra violet irradiation at above 300 nm at room temperature shows controlled free radical polymerization characteristics up to 50% conversions and produces well‐defined polymers with molecular weights close to those predicted from theory and relatively narrow poyldispersities (Mw/Mn ~ 1.30). End group determination and block copolymerization with methyl acrylate suggest that morpholino dithiocarbamate groups were attained at the end of the polymer. Photolysis and polymerization studies revealed that polymerization proceeds via both reversible termination and RAFT mechanisms. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 3387–3395, 2008  相似文献   

15.
Diblock copolymers consisting of a multibranched polymethacrylate segment with densely grafted poly[2‐(2‐methoxyethoxy)ethyl vinyl ether] pendants and a poly(N‐isopropylacrylamide) segment were synthesized by a combination of living cationic polymerization and RAFT polymerization. A macromonomer having both a poly[2‐(2‐methoxyethoxy)ethyl vinyl ether] backbone and a terminal methacryloyl group was synthesized by living cationic polymerization. The sequential RAFT copolymerizations of the macromonomer and N‐isopropylacrylamide in this order were performed in aqueous media employing 4‐cyanopentanoic acid dithiobenzoate as a chain transfer agent and 4,4′‐azobis(4‐cyanopentanoic acid) as an initiator. The obtained diblock copolymers possessed relatively narrow molecular weight distributions and controlled molecular weights. The thermoresponsive properties of these polymers were investigated. Upon heating, the aqueous solutions of the diblock copolymers exhibited two‐stage thermoresponsive properties denoted by the appearance of two cloud points, indicating that the densely grafted poly[2‐(2‐methoxyethoxy)ethyl vinyl ether] pendants and the poly(N‐isopropylacrylamide) segments independently responded to temperature. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

16.
Three tetrafunctional bromoxanthate agents (Xanthate3‐Br, Xanthate2‐Br2, and Xanthate‐Br3) were synthesized. Initiative atom transfer radical polymerizations (ATRP) of styrene (St) or reversible addition fragmentation chain transfer (RAFT) polymerizations of vinyl acetate (VAc) proceeded in a controlled manner in the presence of Xanthate3‐Br, Xanthate2‐Br2, or Xanthate‐Br3, respectively. The miktoarm star‐block copolymers containing polystyrene (PS) and poly(vinyl acetate) (PVAc) chains, PSnb‐PVAc4‐n (n = 1, 2, and 3), with controlled structures were successfully prepared by successive RAFT and ATRP chain‐extension experiments using VAc and St as the second monomers, respectively. The architecture of the miktoarm star‐block copolymers PSnb‐PVAc4‐n (n = 1, 2, and 3) were characterized by gel permeation chromatography and 1H NMR spectra. Furthermore, the results of the cleavage of PS3b‐PVAc and PVAc2b‐PS2 confirmed the structures of the obtained miktoarm star‐block copolymers. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

17.
A novel experimental procedure is presented that allowed probing of reversible addition–fragmentation chain‐transfer (RAFT) free‐radical polymerizations for long‐lived species. The new experimental sequence consisted of gamma irradiation of a mixture of initial RAFT agent (cumyl dithiobenzoate) and monomer at ambient temperature, a subsequent predetermined waiting period without initiation source also at ambient temperature, and then heating of the reaction mixture to a significantly higher temperature. After each sequence step, the monomer conversion and molecular weight distribution were determined, indicating that controlled polymer formation occurs only during the heating period. The results indicated that stable intermediates (either radical or nonradical in nature) are present in such experiments because thermal self‐initiation of the monomer can be excluded as the reason for polymer formation. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 1058–1063, 2002  相似文献   

18.
Polymerizations of styrene under emulsion reversible‐addition fragmentation chain transfer polymerization conditions are reported. Using a recently developed nanoprecipitaiton process, emulsion particles were formed by the precipitation of an acetone solution of a macroRAFT agent into an aqueous solution of poly(vinyl alcohol). The particles were then swollen with monomer and subsequently polymerized. Emulsion polymerizations were performed at 65 and 75 °C in which either KPS, BPO, or a combination of both was used as an initiating source. Reactions were also performed at temperatures over 100 °C in which the thermal initiation of styrene was used as an initiating source. In all cases, the polymerizations proceeded in a living manner, yielding polymers that showed an incremental increase in molecular weight with time and had narrow molecular weight distributions. Plots of number‐ average molecular weight versus conversion were linear, indicating a controlled polymerization. The resulting latices were colloidally stable and gave particle size distributions with a typical average particle diameter in the 150 nm range. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 5708–5718, 2006  相似文献   

19.
The removal of thiocarbonylthio end groups by radical‐addition‐fragmentation‐ coupling from polymers synthesized by RAFT polymerization has been studied. We found that a method, which involves heating the polymer with a large excess (20 molar equivalents) of azobis(isobutyronitrile) (AIBN), while successful with methacrylic polymers, is less effective with styrenic or acrylic polymers and provides only partial end group removal. This is attributed to the propagating radicals generated from the latter polymers being poor radical leaving groups relative to the cyanoisopropyl radical. Similar use of lauroyl peroxide (LPO) completely removes the thiocarbonylthio groups from styrenic or acrylic polymers but, even with LPO in large excess, produces a polymer with a bimodal molecular weight distribution. The formation of a peak of double molecular weight is indicative of the occurrence of self‐termination and ineffective radical trapping. We now report that by use of a combination of LPO (2 molar equivalents) and AIBN (20 molar equivalents) we are able to completely remove thiocarbonylthio end groups of styrenic or acrylic polymers and minimize the occurrence of self termination. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 6704–6714, 2009  相似文献   

20.
The radical polymerization of vinyl acetate (VAc) is moderated by iron(II) acetylacetonate (Fe(acac)2) by the organometallic route (OMRP), as well as by degenerative transfer polymerization (DTP) when in the presence of excess radicals, through the formation of thermally labile organometallic FeIII dormant species. The poly(vinyl acetate) (PVAc)‐FeIII(acac)2 dormant species has been isolated in the form of an oligomer and characterized by 1H NMR, EPR, and IR methods, and then used as a single‐component initiator for the OMRP of VAc. The degree of polymerization of this isolated oligomeric species demonstrates the limited ability of Fe(acac)2, relative to the Co(acac)2 congener, to rapidly trap the growing PVAc radical chain. Control under OMRP conditions is improved by the presence of Lewis bases, especially PMe2Ph. On the other hand, iron(II) phthalocyanine inhibits the radical polymerization of VAc completely. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 3494–3504  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号