共查询到20条相似文献,搜索用时 15 毫秒
1.
Zheng Zhou Matt Mackey Joel Carr Lei Zhu Lionel Flandin Eric Baer 《Journal of Polymer Science.Polymer Physics》2012,50(14):993-1003
The dielectric lifetime and corresponding damage morphology of polycarbonate/poly(vinylidene fluoride‐co‐hexafluoropropylene) (PC/P(VDF‐HFP)) layered systems are studied under constant direct current (DC) field. Melt blends of the two polymers are also considered for comparison. The dielectric lifetimes of the latter are systematically much shorter than the layered systems. The interfaces between the polymers act as flaws that induce up to two orders of magnitude difference between the layered and blend systems. The capacitance values versus time during breakdown progression exhibit an inversed S‐shape pattern. The three regimes in the S‐shape pattern are consecutively attributed to randomly isolated breakdowns, interconnecting breakdowns, and wearing‐out of the capacitor film. The film breakdown images during dielectric lifetime test confirmed the transition from randomly isolated breakdowns to interconnecting breakdowns. This transition was further evidenced by a bimodal distribution in the Weibull analysis. © 2012 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2012 相似文献
2.
Joel M. Carr Matthew Mackey Lionel Flandin Donald Schuele Lei Zhu Eric Baer 《Journal of Polymer Science.Polymer Physics》2013,51(11):882-896
Polymer films with enhanced dielectric and breakdown properties are essential for the production of high energy density polymer film capacitors. By capitalizing on the synergistic effects of forced assembly nanolayer coextrusion and biaxial orientation, polymer multilayer films using poly(ethylene terephthalate) (PET) and a poly(vinylidene fluoride‐co‐tetrafluoroethylene) [P(VDF‐TFE)] copolymer were produced. These films exhibited breakdown fields, under a divergent field using needle/plane electrodes, as high as 1000 kV mm?1. The energy densities of these same materials, under a uniform electric field measured using plane/plane electrodes, were as high as 16 J cm?3. The confined morphologies of both PET and P(VDF‐TFE) were correlated to the observed breakdown properties and damage zones. On‐edge P(VDF‐TFE) crystals induced from solid‐state biaxial stretching enhanced the effective P(VDF‐TFE) layer dielectric constant and therefore increased the dielectric contrast between the PET and P(VDF‐TFE) layers. This resulted in additional charge buildup at the layer interface producing larger tree diameters and branches and ultimately increasing the breakdown and energy storage properties. In addition to energy storage and breakdown properties, the hysteresis behavior of these materials was also evaluated. By varying the morphology of the P(VDF‐TFE) layer, the low‐field dielectric loss (or ion migration behavior) could be manipulated, which in turn also changed the observed hysteresis behavior. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2013, 51, 882–896 相似文献
3.
Salt‐containing membranes based on polymethacrylates having poly(ethylene carbonate‐co‐ethylene oxide) side chains, as well as their blends with poly(vinylidene fluoride‐co‐hexafluoropropylene) (PVDF‐HFP), have been studied. Self‐supportive ion conductive membranes were prepared by casting films of methacrylate functional poly(ethylene carbonate‐co‐ethylene oxide) macromonomers containing lithium bis(trifluorosulfonyl)imide (LiTFSI) salt, followed by irradiation with UV‐light to polymerize the methacrylate units in situ. Homogenous electrolyte membranes based on the polymerized macromonomers showed a conductivity of 6.3 × 10?6 S cm?1 at 20 °C. The preparation of polymer blends, by the addition of PVDF‐HFP to the electrolytes, was found to greatly improve the mechanical properties. However, the addition led to an increase of the glass transition temperature (Tg) of the ion conductive phase by ~5 °C. The conductivity of the blend membranes was thus lower in relation to the corresponding homogeneous polymer electrolytes, and 2.5 × 10?6 S cm?1 was recorded for a membrane containing 10 wt % PVDF‐HFP at 20 °C. Increasing the salt concentration in the blend membranes was found to increase the Tg of the ion conductive component and decrease the propensity for the crystallization of the PVDF‐HFP component. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 79–90, 2007 相似文献
4.
S. S. Guo S. G. Lu Z. K. Xu X.‐Z. Zhao 《Journal of Polymer Science.Polymer Physics》2005,43(21):2972-2980
The relaxor ferroelectric (RFE) behavior in high‐energy electron‐irradiated poly(vinylidene fluoride‐trifluoroethylene) [P(VDF‐TrFE)] 80/20 mol % copolymer system is characterized over a broad frequency and temperature range. The dielectric properties remarkably vary with the irradiated dose in terms of the change from normal ferroelectric (FE) to RFE phase. During the RFE–paraelectric (PE) transition, the dielectric constants, as a function of temperature, can be described by the Vogel–Fulcher (V–F) relation. It has been found that the relationship between the real and imaginary part of dielectric constant in irradiated copolymer can be well fitted with modified Cole–Cole equation and Debye relaxation equation, exhibiting similar features as inorganic RFEs. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 2972–2980, 2005 相似文献
5.
F. Fang W. Yang M. Z. Zhang Z. Wang 《Journal of Polymer Science.Polymer Physics》2007,45(18):2563-2567
The deformation and fracture behavior under uniaxial tension were characterized for high‐energy irradiated poly(vinylidene fluoride‐trifluorethylene) (P(VDF‐TrFE)) 68/32 mol % copolymer films. The results show that the stress–strain behavior of the irradiated copolymer films exhibits ductile polymeric behavior, with its fracture strain being more than five times of that of the nonirradiated ones but of much lower maximum strength. X‐ray diffraction (XRD) analysis and scanning electron microscope (SEM) observation are carried out to examine the microstructure and morphology changes caused by the uniaxial tension. It is demonstrated that the tensile mechanical field reintroduces the polar β‐phase that was previously lost through irradiation. It is suggested that the conformational change from the nonpolar phase to the polar β‐phase during the uniaxial tension, as well as the low crystallinity and loosely packed molecular chain structure, mainly contribute to the observed stress–strain behavior for the irradiated copolymer films. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 2563–2567, 2007 相似文献
6.
Marie‐Pierre Gelin Bruno Ameduri 《Journal of polymer science. Part A, Polymer chemistry》2003,41(1):160-171
PFPE‐b‐PVDF and PFPE‐b‐poly(VDF‐co‐HFP) block copolymers [where PFPE, PVDF, VDF, and HFP represent perfluoropolyether, poly(vinylidene fluoride), vinylidene fluoride (or 1,1‐difluoroethylene), and hexafluoropropylene] were synthesized by radical (co)telomerizations of VDF (or VDF and HFP) with an iodine‐terminated perfluoropolyether (PFPE‐I). Di‐tert‐butyl peroxide (DTBP) was used and was shown to act as an efficient thermal initiator. The numbers of VDF and VDF/HFP base units in the block copolymers were assessed with 19F NMR spectroscopy. According to the initial [PFPE‐I]0/[fluoroalkenes]0 and [DTBP]0/[fluoroalkenes]0 molar ratios, fluorinated block copolymers of various molecular weights (1500–30,300) were obtained. The states and thermal properties of these fluorocopolymers were investigated. The compounds containing PVDF blocks with more than 30 VDF units were crystalline, whereas all those containing poly(VDF‐co‐HFP) blocks exhibited amorphous states, whatever the numbers were of the fluorinated base units. All the samples showed negative glass‐transition temperatures higher than that of the starting PFPE. Interestingly, these PFPE‐b‐PVDF and PFPE‐b‐poly(VDF‐co‐HFP) block copolymers exhibited good thermostability. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 160–171, 2003 相似文献
7.
Ambalangodage C. Jayasuriya Adriana Schirokauer Jerry I. Scheinbeim 《Journal of Polymer Science.Polymer Physics》2001,39(22):2793-2799
The electroactive properties of two random copolymers of vinylidene fluoride (VDF) and hexafluoropropylene (HFP) were studied. The compositions were 95/5 and 85/15 mol % P(VDF/HFP). For each composition, three different film‐preparation methods were used—solvent casting, melt‐pressed quenched, and melt‐pressed slow‐cooled. The ferroelectric properties observed were strongly dependent on the preparation methods of the films as well as the HFP molar content of the samples. The highest remanent polarizations (Pr) obtained from electric displacement versus electric field (D‐E) hysteresis data are 80 and 50 mC/m2 for the 5 and 15% HFP solvent‐cast samples, respectively. The slow‐cooled samples do not exhibit any ferroelectric behavior for either the 5 or 15% HFP copolymers. It was also observed that both the 5 and 15% HFP slow‐cooled samples have a smaller electrostrictive response relative to the other two types of samples. Wide‐angle X‐ray diffraction and DSC results suggest that the 5% HFP sample has a higher crystallinity relative to the 15% HFP sample for each preparation method. In addition, different crystal phases form in the samples resulting from the different preparation methods. Fourier transform infrared results suggest that the slow‐cooled samples are in the nonpolar α phase, whereas the quenched and solvent‐cast samples are more likely in the polar β phase. The slow‐cooled samples do not show a switching peak in their nonpolar α‐phase crystalline state. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 39: 2793–2799, 2001 相似文献
8.
Masayuki Nagai Koh Nakamura Hiroki Uehara Tetsuo Kanamoto Yoshiyuki Takahashi Takeo Furukawa 《Journal of Polymer Science.Polymer Physics》1999,37(18):2549-2556
Oriented poly(vinylidene fluoride) (PVDF) films with β‐form crystals have been commonly prepared by cold drawing of a melt‐quenched film consisting of α‐form crystals. In this study, we have successfully produced highly oriented PVDF thin films (20 µm thick) with β‐crystals and a high crystallinity (55–76%), by solid‐state coextrusion of a gel film to eight times the original length at an established optimum extrusion temperature of 160°C, some 10°C below the melting temperature. The resultant drawn films had a highly oriented (orientation function fc = 0.993) fibrous structure, showing high mechanical properties of an extensional elastic modulus of 8.3 GPa and tensile strength of 0.84 GPa, along the draw direction. Such highly oriented and crystalline films exhibited excellent ferroelectric and piezoelectric properties. The square hysteresis loop was significantly sharper than that of a conventional sample. The sharp switching transient yielded the remnant polarization Pr of 90 mC/m2, and the electromechanical coupling factor kt was 0.24 at room temperature. These values are about 1.5 times greater than those of a conventional β‐PVDF film. Thus, solid‐state coextrusion near the melting point was found to be a useful technique for the preparation of highly oriented and highly crystalline β‐PVDF films with superior mechanical and electrical properties. The morphology of the extrudate relevant to such properties is discussed. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 2549–2556, 1999 相似文献
9.
Vanessa F. Cardoso Ana R. Machado Vânia C. Pinto Paulo J. Sousa Gabriela Botelho Graça Minas Senentxu Lanceros‐Méndez 《Journal of Polymer Science.Polymer Physics》2016,54(18):1802-1810
The manufacture of three‐dimensional patterned electroactive poly(vinylidene fluoride‐co‐chlorotrifluoroethylene) microstructures with tailored architecture, morphology, and wettability is presented. The patterned microstructures are fabricated using a simple, effective, low cost, and reproducible technique based on microfluidic technology. These novel structures can represent innovative platforms for advanced strategies in a wide range of biotechnological applications, including tissue engineering, drug delivery, microfluidic, and sensors and actuators devices. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54, 1802–1810 相似文献
10.
Koh Nakamura Daisuke Sawai Yuuji Watanabe Daisuke Taguchi Yoshiyuki Takahashi Takeo Furukawa Tetsuo Kanamoto 《Journal of Polymer Science.Polymer Physics》2003,41(14):1701-1712
Oriented poly(vinylidene fluoride) (PVDF) films consisting of β crystals were prepared by the solid‐state coextrusion (SC) of a gel film near the melting temperature (Tm) and by conventional cold tensile drawing (TD) of a melt‐quenched film. These films were annealed over the temperature range of 75–190 °C (below and above the static Tm) while the sample length was kept constant or constant loads were applied. After annealing with the sample length kept constant, the dynamic Young's modulus markedly decreased because of the relaxation of oriented amorphous chains, as shown by infrared spectroscopy. In contrast, annealing under a constant load improved the chain orientation in both the crystalline and amorphous regions, resulting in an increase in the modulus from an initial 10.5 to 14.3 GPa for the SC and from an initial 3.3 to 4.8 GPa for the TD. The SC, annealed at 190 °C with a constant load corresponding to an initial tension of 200 MPa, exhibited an extreme crystalline‐chain orientation of 0.998 and a modulus of 14.3 GPa, among the highest values ever reported for PVDF. Although the remanent polarization (Pr) of the TD increased slightly from the initial 62 to 68 mC/m2, Pr of the SC stayed constant at 100 mC/m2 independently of the annealing conditions. This suggests that the Pr value of 100 mC/m2 approached the equilibrium value for this PVDF sample containing 3.5 mol % structural defects. Therefore, although the modulus and Pr of the TD increased slightly with annealing, the maximum values achieved by annealing were markedly lower than those of the SC and annealed SC. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 1701–1712, 2003 相似文献
11.
S. S. Guo W. P. Li X.‐Z. Zhao Z. Peng S. T. Lau H. L. W. Chan C. L. Choy 《Journal of Polymer Science.Polymer Physics》2004,42(6):1099-1105
The effect of electron irradiation on poly(vinylidene fluoride‐trifluoroethylene) (56/44 mol %) copolymers was studied with dielectric constant measurements, differential scanning calorimetry (DSC), X‐ray diffraction, thermally stimulated depolarization current (TSDC) spectroscopy, and polarization hysteresis loops. The dielectric relaxation peaks, obeying the Vogel–Fulcher law, indicated that the copolymers were transformed from a normal ferroelectric to a relaxor ferroelectric. The X‐ray and DSC results showed that both the crystalline and polar ordering decreased after irradiation, indicating a partial recovery from trans–gauche bonds to local trans bonds (polar ordering). Moreover, the peak temperature decreased with the irradiation dose in the TSDC spectra; this demonstrated fewer dipoles and crystalline regions in the irradiated copolymer films during the ferroelectric–paraelectric transition and was consistent with polarization hysteresis loop measurements. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 1099–1105, 2004 相似文献
12.
Yao Guijun Wang Boqiu Dong Yuping Zhang Maofeng Yang Zhaohui Yao Qiaoling Lam Jacky Wing Yip Tang Benzhong 《Journal of polymer science. Part A, Polymer chemistry》2004,42(13):3224-3229
Multilayer self‐assembled films, consisting of partially doped polyaniline (PAN) as a polycation and water‐soluble poly(4‐carboxyphenyl)acetylene (PCPA) as a polyanion, were fabricated through electrostatic attraction. These ultrathin PCPA/PAN films were relatively stable toward aqueous electrolyte solutions and polar organic solvents, and the photoelectric conversion properties of the self‐assembled PCPA/PAN films could be measured with traditional three‐electrode cells in 0.5 M KCl aqueous solutions. With an increase in the bilayer number, the photocurrent rose, and it reached its maximum at eight bilayers. A further increase led to a current drop due to an increase in the recombination probability and weak visible‐light transmission. When neutral PAN films were used, the photocurrent increased consecutively within 15 bilayers, and this indicated that the PAN molecules in the neutral state were stronger electron donors than those in the partially doped state. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 3224–3229, 2004 相似文献
13.
T. Y. Lam S. T. Lau H. L. W. Chan C. L. Choy W. Y. Cheung S. P. Wong 《Journal of Polymer Science.Polymer Physics》2005,43(17):2334-2339
The effects of high‐energy proton irradiation on the structure and properties of 56/44 mol % poly(vinylidene fluoride–trifluoroethylene) copolymer were studied with differential scanning calorimetry (DSC), X‐ray diffraction (XRD), relative permittivity, and polarization hysteresis measurements. Copolymer films prepared by hot compression molding were irradiated with a broad range of proton dosages (10–107 Mrad) at room temperature. The DSC results showed that the ferroelectric transition was strongly affected by the proton dosages. The XRD data indicated the reduction of polar ordering in the copolymer by the proton‐irradiation treatment. From the relative permittivity and polarization behavior, the copolymer film was found to be converted from a normal ferroelectric material to a relaxor ferroelectric material as the proton dosage was increased to 50 Mrad. The electrostrictive coefficient of the 56/44 mol % copolymer was enhanced after irradiation, and the optimized proton dosage for attaining the highest electrostrictive strain response was determined. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 2334–2339, 2005 相似文献
14.
Weimin Xia Zhuo Xu Qiuping Zhang Zhicheng Zhang Yuanqing Chen 《Journal of Polymer Science.Polymer Physics》2012,50(18):1271-1276
Thermal processing at various temperatures has been used to fabricate poly(vinylidene fluoride‐co‐trifluoroethylene) [P(VDF‐co‐TrFE)] films with varied crystalline properties in an attempt to improve their piezoelectric properties. Although the dielectric constant of the films annealed at higher temperature is smaller than that of cooled and quenched ones, it has been shown that the annealed films possess larger crystallinity and stacked lamellar crystal grain size. The ferroelectric domains deriving from crystal region in all the samples are effectively improved by hot polarization. As a result, the remnant polarizations (Pr) and coercive electric field (Ec) of the corresponding films are improved at a low frequency due to the response of dipoles in crystal phase, and the largest piezoelectric constant in the longitudinal thickness mode (d33=?25 pC/N) is obtained in an annealed copolymer film. The results illustrate improving the crystal structure of P(VDF‐co‐TrFE) is an effective way to realize high electromechanical properties, which provides broadly applied scenery for this kind of copolymer in piezoelectric components. © 2012 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2012 相似文献
15.
This work describes the dielectric properties of piezoelectric poly(vinylidene fluoride) (PVDF) thin films in the frequency and temperature ranges relevant for usual applications. We measured the isothermal dielectric relaxation spectra of commercial piezoelectric PVDF thin films between 10 Hz to 10 MHz, at several temperatures from 278 K to 308 K. Measurements were made for samples in mechanically free and clamped conditions, in the direction of the poling field (perpendicular to the film). We found that the imaginary part of the dielectric relaxation spectra of free and clamped PVDF samples is dominated by a peak, above 100 kHz, that can be characterized by a Havriliak-Negami function. The characteristic time follows an Arrhenius dependence on temperature. Moreover, the spectra of the free PVDF samples show two additional peaks at low frequencies which are associated with mechanical relaxation processes. Our results are important for the characterization of piezoelectric PVDF, particularly after the stretching and poling processes in thin films, and for the design and characterization of a broad range of ultrasonic transducers. 相似文献
16.
Synthesis and magnetic properties of organic multilayer films based on the layer‐by‐layer assembly 下载免费PDF全文
Two polymers containing pyridine rings were prepared by free‐radical polymerization and confirmed by Fourier transform infrared and 1H NMR spectra. The preparation of four multilayer films that were obtained by self‐assembly of the polymer and the transition metal neutralized polyelectrolyte on PE substrate was described. UV–vis spectra and atomic force microscopy images were applied to characterize these films and indicate the uniform assembling process. The driving force for building up the multilayer films was identified by infrared spectroscopy to be the coordination interaction. The magnetic behavior was examined as a function of magnetic field strength at 30 kOe and as a function of temperature (5–300 K). All films display strong soft ferromagnetic properties and higher than those of the bulk materials. The magnetic results show that the layer‐by‐layer self‐assembling approach is beneficial to the ordered alignment of adjacent paramagnetic spins and induces better magnetic phenomena. Copyright © 2015 John Wiley & Sons, Ltd. 相似文献
17.
Wen‐Fen Su Ruei‐Tang Chen Yun Chen 《Journal of polymer science. Part A, Polymer chemistry》2011,49(2):352-360
This article reports the synthesis and characterization of a novel thermally crosslinkable hole‐transporting poly (fluorene‐co‐triphenylamine) (PFO‐TPA) by Suzuki coupling reaction, followed with its application in the fabrication of multilayer light‐emitting diodes by wet processes. The thermal, photophysical, and electrochemical properties of PFO‐TPA were investigated by differential scanning calorimeter, thermogravimetric analysis, optical spectroscopy, and cyclic voltammetry, respectively. Thermally crosslinked PFO‐TPA, through pendant styryl groups, demonstrates excellent thermal stability (Td > 400 °C, Tg = 152 °C), solvent resistance, and film homogeneity. Its highest occupied molecular orbital level (?5.30 eV) lies between those of PEDOT:PSS (?5.0 ~ ?5.2 eV) and poly(9,9‐dioctylfluorene) (PFO: ?5.70 eV), forming a stepwise energy ladder to facilitate hole injection. Multilayer device with crosslinked PFO‐TPA as hole‐injection layer (HIL) (ITO/PEDOT:PSS/HIL/PFO/LiF/Ca/Al) was readily fabricated by successive spin‐coating processes, its maximum luminance efficiency (3.16 cd/A) were about six times higher than those without PFO‐TPA layer (0.50 cd/A). The result of hole‐only device also confirmed hole‐injection and hole‐transport abilities of crosslinked PFO‐TPA layer. Consequently, the device performance enhancement is attributed to more balanced charges injection in the presence of crosslinked PFO‐TPA layer. The thermally crosslinkable PFO‐TPA is a promising material for the fabrication of efficient multilayer polymer light‐emitting diodes because it is not only a hole‐transporting polymer but also thermally crosslinkable. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011 相似文献
18.
Zhenhong Wei Jingkun Xu Shouzhi Pu Yukou Du 《Journal of polymer science. Part A, Polymer chemistry》2006,44(16):4904-4915
The copolymerization of 3‐methylthiophene (MeT) and fluorene (FE) was successfully achieved in boron trifluoride diethyl etherate by the direct anodic oxidation of the monomer mixtures on a platinum electrode. The optimal feed ratio together with the best suitable potential for their copolymerization was determined. The as‐formed copolymer films, which were copolymerized with a feed ratio of FE/MeT = 2:1 at a constant potential of 1.3 V (vs a saturated calomel electrode), had the advantages of both poly(3‐methylthiophene) and polyfluorene, such as good electrochemical behavior, high conductivity, excellent thermal stability, and high film quality. The structure of the copolymer was investigated with ultraviolet–visible, infrared spectroscopy, and thermal analysis. Fluorescence spectroscopy studies revealed that the dedoped copolymer film in the solid state was a good blue‐light emitter with a strong emission at 435 nm and a shoulder at 459 nm. The emitting properties of the copolymer could be tuned by parameters during the electrochemical polymerization, such as the applied potential and monomer feed ratio. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 4904–4915, 2006 相似文献
19.
Koh Nakamura Masayuki Nagai Tetsuo Kanamoto Yoshiyuki Takahashi Takeo Furukawa 《Journal of Polymer Science.Polymer Physics》2001,39(12):1371-1380
Gel films of poly(vinylidene fluoride) (PVDF) consisting of α‐form crystals were drawn uniaxially by solid‐state coextrusion to extrusion draw ratios (EDR) up to 9 at an optimum extrusion temperature of 160 °C, about 10°C below the melting temperature (Tm). The development of an oriented structure and mechanical and electrical properties on coextrusion drawing were studied as a function of EDR. Wide‐angle X‐ray diffraction patterns showed that the α crystals in the original gel films were progressively transformed into oriented β‐form crystals with increasing EDR. At the highest EDR of 9 achieved, the drawn product consisted of a highly oriented fibrous morphology with only β crystals even for the draw near the Tm. The dynamic Young's modulus along the draw direction also increased with EDR up to 10.5 GPa at the maximum EDR of 9. The electrical properties of ferroelectricity and piezoelectricity were also markedly enhanced on solid‐state coextrusion. The D–E square hysteresis loop became significantly sharper with EDR, and a remanent polarization Pr of 100 mC/m2 and electromechanical coupling factor along the thickness direction kt of 0.27 were achieved at the maximum EDR of 9. The crystallinity value of 73–80% for the EDR 9 film, estimated from these electrical properties, compares well with that calculated by the ratio of the crystallite size along the chain axis to the meridional small‐angle X‐ray scattering (SAXS) long period, showing the average thickness of the lamellae within the drawn β film. These results, as well as the appearance of a strong SAXS maximum, suggest that the oriented structure and properties of the β‐PVDF are better explained in terms of a crystal/amorphous series arrangement along the draw axis. Further, the mechanical and electrical properties obtained in this work are the highest among those ever reported for a β‐PVDF, and the latter approaches those observed for the vinylidene fluoride and trifluoroethylene copolymers. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 39: 1371–1380, 2001 相似文献
20.
E. Ortiz A. Cuán C. Badillo C.M. Cortés‐Romero Q. Wang L. Noreña 《International journal of quantum chemistry》2010,110(13):2411-2417
A theoretical study of poly(vinylidene flouride‐trifluoroethylene) and poly(vinylidene fluoride‐chlorotrifluoroethylene, is presented. By density functional theory calculations, some of the properties of these materials have been obtained. Among such properties, the dipolar moment and the energies associated to the structural changes. The B3LYP functional and 6311+G(d,p) bases set were used with Gaussian program. Calculations associated to different conformations were carried out to get insight about the involved phase changes. The energetic, charges, and dipole moment were calculated. The conformations, namely, I = Tp, II = TGa, and III = TGp, where T means trans and G means gauche, for the two polymers aforementioned were compared with the poly(vinilydene fluoride) studies previously obtained. © 2010 Wiley Periodicals, Inc. Int J Quantum Chem 110:2411–2417, 2010 相似文献