首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 787 毫秒
1.
The effect of Ce(Ⅲ) on the morphology and structure of deposited film of lead dioxide was studied by cyclic voltammetry (CV), X-ray diffractometry (XRD) and scanning tunneling microscopy (STM). The results indicated that the Ce-doped PbO2 film consisted of a mixture of α- and β-phase of PbO2. Ce doping changed the size of PbO2 crystal grains and made the crystallite size on the electrode surface in the nanometer range. Owing to the formation of nanometer-structured grains, the specific surface areas and activity sites of the electrode surface were increased, hence the catalytic activity of Ce-doped PbO2 electrode was evidently higher than that of undoped PbO2 electrode.  相似文献   

2.
The reduced graphene oxide‐Bi2WO6 (rGO‐BWO) photocatalysts with the different RF/O values (molar ratio of the F molar mass and the O's molar mass of Bi2WO6) had been successfully synthesized via one‐step hydrothermal method. The F‐doped rGO‐BWO samples were characterized by X‐ray diffraction patterns (XRD), field‐emission scanning electron microscopy (FE‐ESEM), transmission electron microscopy (TEM), Brunauer–Emmett–Teller surface area (BET), X‐ray photoelectron spectroscopy (XPS) and UV–vis diffuse reflectance spectra (DRS). The results indicate that F? ions had been successfully doped into rGO‐BWO samples. With the increasing of the RF/O values from 0 to 2%, the evident change of the morphology and the absorption edges of F‐doped rGO‐BWO samples and the photocatalytic activities had been enhanced. Moreover, the photocatalytic activity of F‐doped rGO‐BWO with RF/O = 0.05 were better than rGO‐BWO and the other F‐doped rGO‐BWO under 500 W Xe lamp light irradiation. The enhanced photocatalytic activity can be attributed to the morphology of the intact microsphere that signify the bigger specific surface area for providing more possible reaction sites for the adsorption–desorption equilibrium of photocatalytic reaction, the introduction of F? ions that may cause the enhancement of surface acidity and creation of oxygen vacancies under visible light irradiation, the narrower band gap which means needing less energy for the electron hole pair transition.  相似文献   

3.
Self‐doped TiO2 nanotube array (DTNA) electrodes were fabricated through anodic oxidation combined with cathodic reduction. The morphology and structural features of pristine TiO2 nanotube arrays and DTNA electrodes were studied through scanning electron microscopy, X‐ray diffractometry, and X‐ray photoelectron spectroscopy. An accelerated life test was used to test the electrode service lifetime and thus the electrode's stability. The service lifetime of the DTNA electrode prepared at constant 40 V for 6 hr was approximately 338.7 hr at constant 1 mA/cm2 in a 1 M NaClO4 solution. Methyl orange (MO) was employed as the degradation probe for measuring electrochemical oxidation performance. The color removal rate of 200 mg/L MO of the DTNA electrode (85.2% at 1 mA/cm2) was greater than that of the Ti/IrO2 electrode (31.1% at 1 mA/cm2). The larger the surface area of the DTNA electrode is, the more conductive the electrode is for the degradation of organic substances. Organic degradation on the DTNA electrode occurred primarily through an indirect pathway (producing [?OH]).  相似文献   

4.
Phosphorus‐doped (P‐doped) graphene with the P doping level of 1.30 at % was synthesized by annealing the mixture of graphene and phosphoric acid. The presence of P was confirmed by elemental mapping and X‐ray photoelectron spectroscopy, while the morphology of P‐doped graphene was revealed by using scanning electron microscopy and transmission electron microscopy. To investigate the effect of P doping, the electrochemical properties of P‐doped graphene were tested as a supercapacitor electrode in an aqueous electrolyte of 1 M H2SO4. The results showed that doping of P in graphene exhibited significant improvement in terms of specific capacitance and cycling stability, compared with undoped graphene electrode. More interestingly, the P‐doped graphene electrode can survive at a wide voltage window of 1.7 V with only 3 % performance degradation after 5000 cycles at a current density of 5 A g?1, providing a high energy density of 11.64 Wh kg?1 and a high power density of 831 W kg?1.  相似文献   

5.
Bi‐doped TiO2 nanotubes with variable Bi/Ti ratios were synthesized by hydrothermal treatment in 10 mol·L?1 NaOH (aq.) through using Bi‐doped TiO2 particles derived from conventional sol‐gel method as starting materials. The effects of Bi content on the morphology, textural properties, photo absorption and photocatalytic activity of TiO2 nanotubes were investigated. The scanning electron microscopy (SEM), transmission electron microscopy (TEM), X‐ray diffraction (XRD) and X‐ray photoelectron spectroscopy (XPS) observations of the obtained samples revealed the formation of titanate nanotube structure doped with Bi, which exists as a higher oxidation state than Bi3+. Bi‐doping TiO2 nanotubes exhibited an extension of light absorption into the visible region and improved photocatalytic activities for hydrogen production from a glycerol/water mixed solution as compared with pure TiO2 nanotubes. There was an optimal Bi‐doped content for the photocatalytic hydrogen production, and high content of Bi would retard the phase transition of titanate to anatase and result in morphology change from nanotube to nanobelt, which in turn decreases the photocatlytic activity for hydrogen evolution.  相似文献   

6.
Gold nanoparticle (Au‐NPs)‐Titanium oxide nanotube (TiO2‐NTs) electrodes are prepared by using galvanic deposition of gold nanoparticles on TiO2‐NTs electrodes as support. Scanning electron microscopy and energy‐dispersive X‐ray spectroscopy results indicate that nanotubular TiO2 layers consist of individual tubes of about 60–90 nm diameters and gold nanoparticles are well‐dispersed on the surface of TiO2‐NTs support. The electrooxidation of hydroquinone of Au‐NPs/TiO2‐NTs electrodes is investigated by different electrochemical methods. Au‐NPs/TiO2‐NTs electrode can be used repeatedly and exhibits stable electrocatalytic activity for the hydroquinone oxidation. Also, determination of hydroquinone in skin cream using this electrode was evaluated. Results were found to be satisfactory and no matrix effects are observed during the determination of hydroquinone content of the “skin cream” samples.  相似文献   

7.
Owing to its high oxygen evolution potential, PbO2 electrode is one of the candidates for electrochemical advanced oxidation processes (EAOPs). To further improve its performance as EAOP electrode, a Ga2O3-doped PbO2 electrode (Ga2O3–PbO2 electrode) was fabricated by the composite plating method. SEM and XRD results showed that the crystalline in the coating of Ga2O3–PbO2 electrode is more uniform and in smaller size than that in the undoped PbO2 electrode, which provided a higher specific surface area. The electrochemical studies showed that the Ga2O3–PbO2 electrode had higher oxygen evolution potential (OEP) and smaller electrode surface impedance, which is a benefit for the formation of hydroxyl radicals (·OH). The electrochemically degradation test using bromocresol green sodium (BG) solution and glucose solution as the simulated wastewater showed that the kinetics of electrochemical catalytic degradation is a pseudo-first-order reaction, and the reaction rate constant on Ga2O3–PbO2 electrode was 2 times accelerated.  相似文献   

8.
Novel F‐doped Ag/AgBr photocatalysts containing various amounts of F? were synthesized by an ion exchange method. The photocatalysts were characterized using X‐ray diffraction (XRD), scanning and transmission electron microscopies, X‐ray photoelectron, ultraviolet–visible absorption and photoluminescence spectroscopies and electron spin resonance (ESR). Powder XRD revealed that F? was inserted into the crystal lattices of AgBr and partially replaced Br?, resulting in the contraction of the AgBr lattices. Methyl orange photodegradation experiments showed that the photocatalytic activity of F‐doped Ag/AgBr was significantly dependent on the amount of F?. Ag/AgBr doped with 0.02 M F? achieved the highest activity of 91% after 8 min. ESR showed the main active species in methyl orange degradation was ?OH. The main enhancement mechanism is that F? inhibits the recombination of electron–hole pairs.  相似文献   

9.
研究Pb(II)和H+离子浓度对全铅单液流电池正、负电极在复合石墨基体上电化学行为的影响.结果表明,PbO2正极和Pb负极的电极过程受电化学和扩散混合控制.Pb(II)氧化沉积成PbO2时出现成核环,铅负极成核过电位小,充放电电压差远小于PbO2正极,电池极化主要来自PbO2正极.增加H+浓度有利于降低PbO2正极和Pb负极的极化,但析氧、析氢副反应和腐蚀加重.增大Pb(II)浓度有利于抑制析氧,但PbO2正极充电电压升高,充放电电压差增大.Pb(II)浓度较低时,充放电过程中PbO2沉积层少许脱落,充电电压进一步降低且更趋平稳.为此,电解液中HBF4浓度以2 mol L-1为宜,Pb(II)浓度应在0.9 mol L-1以上.  相似文献   

10.
High temperature processing is an important method for recovering long‐lived elements from spent nuclear fuel. Electrolysis is the key technology for high temperature processing. The electrochemical behaviors of Sn2+, Nd3+ and the mechanisms of Sn‐Nd alloy formation were investigated on a Mo electrode at 873 K by conducting a series of electrochemical techniques. The results showed the deposition of Nd on inert electrode is a two‐step process in LiCl‐KCl‐SnCl2 (2.0 wt.%) melt system. Subsequently, the electrochemical extraction of Nd from molten chlorides were carried out on the Mo electrode at temperature of 873 K by the potentiostatic electrolysis at ?1.2 V for 40 hr. Besides, the extraction efficiency is 97.6%. A series of potentiostatic electrolysis were carried out at potential range between ?1.0 and ? 1.4 V. The NdSn3 alloy was obtained by electrolysis at ?1.2 V. This deposition potential is consistent with the predicted results of the mathematical model. The micro‐chemical analysis and morphology analysis of the deposits was characterized by energy dispersive spectrometry (EDS) with scanning electron microscopy (SEM) equipped. The composition of the deposits was analyzed by X‐ray diffraction (XRD) and inductive coupled plasma atomic emission spectrometer (ICP‐AES).  相似文献   

11.
《Electroanalysis》2017,29(3):835-842
A novel electrochemically activated doped Ta2O5 particles modified carbon paste electrode (EA‐Ta2O5‐CPE) was prepared and applied for selective and sensitive determination of chrysin. X‐ray diffraction (XRD), scanning electron microscopy (SEM), electrochemical impedance spectroscopy (EIS) techniques and cyclic voltammetry (CV) were used to characterize the Ta2O5 particles and investigate the electrochemical response of the sensor. Compared with bare CPE, the doped Ta2O5 modified electrode got much more porous by electrochemical treatment and exhibited larger effective surface area, more reactive site and excellent electrochemical catalytic activity toward the oxidation of chrysin. Under optimum conditions by LSV, the oxidation peak currents responded to chrysin linearly over a concentration range from 5.0×10−8 to 7.0×10−6 mol L−1 with a detection limit of 2.0×10−8 mol L−1 (5.08 ng mL−1). The fabricated sensor showed anti‐interference ability against the biological common interferents (i.e. baicalein, baicalin) and provided to be reliable for the determination of chrysin in Chinese medicinal herb Oroxylum indicum and chrysin capsules samples with satisfactory results.  相似文献   

12.
Highly‐ordered Fe‐doped TiO2 nanotubes (TiO2nts) were fabricated by anodization of co‐sputtered Ti–Fe thin films in a glycerol electrolyte containing NH4F. The as‐sputtered Ti–Fe thin films correspond to a solid solution of Ti and Fe according to X‐ray diffraction. The Fe‐doped TiO2nts were studied in terms of composition, morphology and structure. The characterization included scanning electron microscopy, energy‐dispersive X‐ray spectroscopy, X‐ray diffraction, UV/Vis spectroscopy, X‐ray photoelectron spectroscopy and Mott–Schottky analysis. As a result of the Fe doping, an indirect bandgap of 3.0 eV was estimated using Tauc’s plot, and this substantial red‐shift extends its photoresponse to visible light. From the Mott–Schottky analysis, the flat‐band potential (Efb) and the charge carrier concentration (ND) were determined to be ?0.95 V vs Ag/AgCl and 5.0 ×1019 cm?3 respectively for the Fe‐doped TiO2nts, whilst for the undoped TiO2nts, Efb of ?0.85 V vs Ag/AgCl and ND of 6.5×1019 cm?3 were obtained.  相似文献   

13.
The electrochemical behavior of PbO2/PbSO4 electrode is investigated in 4.5 M H2SO4 in presence of three surfactants, Sodium Dodecyl Sulfate (SDS), Cetyltrimethylammonium bromide (CTAB) and Sodium tripolyphosphate (STPP), using cyclic voltametry, electrochemical spectroscopy impedance and galvanostatic discharge as techniques. The micro morphology of the surface of the modified PbO2 electrodes is examined by scanning electron microscopy. The results show that SDS and CTAB when added in the electrolyte could refine the coating particles and change the roughness of the surface of the electrode leading to a thin film of PbO2 with amorphous character. In addition, SDS and CTAB shift the hydrogen evolution potential towards more negative values, improve the discharge capacity of the anodic layer and accelerate the charge transfer. Under cathodic polarization, CTAB presents the lowest value of the charge transfer resistance Rct. In the contrary, STPP shifts the oxygen evolution potential towards more positive values, passivates the surface of the electrode and inhibits completely the reaction of PbO2 formation.  相似文献   

14.
The synthesis of catalytic coatings on porous titanium electrodes by the method of magnetron sputtering is considered. The content of dopant ions Fe3+ and F is optimized as regards the activity and stability of the PbO2 catalyst in the reaction of ozone electrogeneration as well as the current efficiency with respect to ozone. It is shown that the best characteristics of the electrochemical ozone generator are observed on the PbO2 catalyst doped with Fe3+ and F ions in the amount of 3–4 and 1–2 at %, respectively.  相似文献   

15.
A series of tungsten‐doped Titania photocatalysts were synthesized using a low‐temperature method. The effects of dopant concentration and annealing temperature on the phase transitions, crystallinity, electronic, optical, and photocatalytic properties of the resulting material were studied. The X‐ray patterns revealed that the doping delays the transition of anatase to rutile to a high temperature. A new phase WyTi1‐yO2 appeared for 5.00 wt% W‐TiO2 annealed at 900 °C. Raman and diffuse reflectance UV–Vis spectroscopy showed that band gap values decreased slightly up to 700 °C. X‐ray photoelectron spectroscopy showed that surface species viz. Ti3+, Ti4+, O2?, oxygen‐vacancies, and adsorbed OH groups vary depending on the preparation conditions. The photocatalytic activity was evaluated via the degradation of methylene blue using LED white light. The degradation rate was affected by the percentage of dopants. The best photocatalytic activity was achieved with the sample labeled 5.00 wt% W‐TiO2 annealed at 700 °C.  相似文献   

16.
《化学:亚洲杂志》2017,12(16):2127-2133
In this work, β‐Co(OH)2 nanosheets are explored as efficient pseudocapacitive materials for the fabrication of 1.6 V class high‐energy supercapacitors in asymmetric fashion. The as‐synthesized β‐Co(OH)2 nanosheets displayed an excellent electrochemical performance owing to their unique structure, morphology, and reversible reaction kinetics (fast faradic reaction) in both the three‐electrode and asymmetric configuration (with activated carbon, AC). For example, in the three‐electrode set‐up, β‐Co(OH)2 exhibits a high specific capacitance of ∼675 F g−1 at a scan rate of 1 mV s−1. In the asymmetric supercapacitor, the β‐Co(OH)2∥AC cell delivers a maximum energy density of 37.3 Wh kg−1 at a power density of 800 W kg−1. Even at harsh conditions (8 kW kg−1), an energy density of 15.64 Wh kg−1 is registered for the β‐Co(OH)2∥AC assembly. Such an impressive performance of β‐Co(OH)2 nanosheets in the asymmetric configuration reveals the emergence of pseudocapacitive electrodes towards the fabrication of high‐energy electrochemical charge storage systems.  相似文献   

17.
Nanostructured α‐Fe2O3 with and without fluorine substitution were successfully obtained by a green route, that is, microwave irradiation. The hematite phase materials were evaluated as a high‐performance electrode material in a hybrid supercapacitor configuration along with activated carbon (AC). The presence of fluorine was confirmed through X‐ray photoelectron spectroscopy and transmission electron microscopy. Fluorine‐doped Fe2O3 (F‐Fe2O3) exhibits an enhanced pseudocapacitive performance compared to that of the bare hematite phase. The F‐Fe2O3/AC cell delivered a specific capacitance of 71 F g?1 at a current density of 2.25 A g?1 and retained approximately 90 % of its initial capacitance after 15 000 cycles. Furthermore, the F‐Fe2O3/AC cell showed a very high energy density of about 28 W h kg?1 compared to bare hematite phase (~9 W h kg?1). These data clearly reveal that the electrochemical performance of Fe2O3 can be improved by fluorine doping, thereby dramatically improving the energy density of the system.  相似文献   

18.
《Electroanalysis》2017,29(9):2083-2089
A facile and green electrochemical method for the fabrication of three‐dimensional porous nitrogen‐doped graphene (3DNG) modified electrode was reported. This method embraces two consecutive steps: First, 3D graphene/polypyrrole (ERGO/PPy) composite was prepared by electrochemical co‐deposition of graphene and polypyrrole on a gold foil. Subsequently, the ERGO/PPy composite modified gold electrode was annealed at high temperature. Thus 3DNG modified electrode was obtained. Scanning electron microscopy (SEM), X‐ray photoelectron spectroscopy (XPS) and Raman spectroscopy were used to characterize the structure and morphology of the electrode. The electrode exhibits excellent electroanalytical performance for the reduction of hydrogen peroxide (H2O2). By linear sweep voltammetric measurement, the cathodic peak current was linearly proportional to H2O2 concentration in the range from 0.6 μM to 2.1 mM with a sensitivity of 1.0 μA μM−1 cm−2. The detection limit was ascertained to be 0.3 μM. The anti‐interference ability, reproducibility and stability of the electrode were carried out and the electrode was applied to the detection of H2O2 in serum sample with recoveries from 98.4 % to 103.2 %.  相似文献   

19.
Copper‐doped iron sulfide (CuxFe1?xS, x = 0.010–0.180) thin films were deposited using a single‐source precursor, Cu(LH)2Cl2 (LH = monoacetylferrocene thiosemicarbazone), by aerosol‐assisted chemical vapor deposition technique. The Cu‐doped FeS thin films were deposited at different substrate temperatures, i.e. 250, 300, 350, 400 and 450 °C. The deposited thin films were characterized by X‐ray diffraction (XRD) patterns, Raman spectra, scanning electron microscopy, energy dispersive X‐ray analysis (EDX) and atomic force microscopy. XRD studies of Cu‐doped FeS thin films at all the temperatures revealed formation of single‐phase FeS structure. With increasing substrate temperature from 250 to 450 °C, there was change in morphology from wafer‐like to cylindrical plate‐like. EDX analysis showed that the doping percentage of copper increased as the substrate temperature increased from 250 to 450 °C. Raman data supports the doping of copper in FeS films. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

20.
The anodic reaction of Ni in an alkaline solution was studied by the tip–substrate voltammetry mode of scanning electrochemical microscopy (SECM) and cyclic voltammetry (CV). A platinum microdisc electrode was selected as the tip electrode, which functioned as a pH sensor with transient response capability. The pH value of the solution near the Ni electrode surface varied while the Ni substrate oxidation reaction occurred, and the pH variation could be detected by the tip faradic current. The cyclic voltammogram results showed that two types of hydroxides: i.e. α‐Ni(OH)2 and β‐Ni(OH)2 were formed during Ni oxidation in the lower potential region. In the proceedings of α‐Ni(OH)2 → γ‐NiOOH and β‐Ni(OH)2 → β‐NiOOH, the process of OH? concentration decrease in the solution was ahead and behind of electron transfer in the solid phase, respectively. These results indicate that the OH? adsorption process occurs as an elementary step in the former reaction and the H+ diffusion process from the inner to the outer layer of the solid phase occurs as a subsequent step in the latter reaction. The results also revealed that the oxide film on the Ni surface has a two‐layer structure. The real potential of the oxygen evolution reaction (OER) on the Ni surface with different cycles is also analyzed in the paper. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号