首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A well‐defined multiarm star copolymer poly(styrene)‐b‐poly(ε‐caprolactone) (PSOH‐b‐PCL) with an average number of PCL arms per molecule of 60 has been prepared. 4‐Chloromethyl styrene (4‐CMS) was polymerized by means of atom transfer radical polymerization (ATRP) to obtain a hyperbranched poly(styrene) with chlorines as terminal groups. Subsequently, chlorines were substituted by reaction with diisopropanolamine (DIPA) to give the hydroxyl‐ended derivative. Finally, the hydroxyl‐ended hyperbranched poly(styrene) has been used as a macroinitiator core to polymerize ε‐caprolactone by means of cationic ring‐opening polymerization so as to obtain the star copolymer. In a second step, PSOH‐b‐PCL was used as reactive modifier of diglycidylether of bisphenol A formulations cured by 1‐methyl imidazole (1‐MI) obtaining nanostructured thermosets. The curing process was studied by dynamic scanning calorimetry and Fourier transform infrared spectroscopy (FTIR). By rheometry, the effect of this new polymer topology on the complex viscosity (η*) of the reactive mixture and on the gelation process was also analyzed. The thermomechanical characteristics of the modified materials were determined. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

2.
Well‐defined multiarm star copolymers, hyperbranched poly(glycidol)‐b‐poly(ε‐caprolactone), with an average of 100–110 arms per molecule and a molecular weight of arms of 3000 g/mol (PGOH‐b‐PCL30) and 1000 g/mol (PGOH‐b‐PCL10) were synthesized by cationic ring‐opening polymerization of ε‐caprolactone from a poly(glycidol) core and used to modify diglycidylether of bisphenol A formulations. The curing process, studied by dynamic scanning calorimetry, was only slightly retarded when PGOH‐b‐PCLx were added to the formulation. By rheometry, the effect of this new topology and the arm length on the complex viscosity (η*) and gelation of the reactive mixture was analyzed in detail. The addition of these new reactive modifiers decreases the global shrinkage and increases the conversion at gelation. In addition, the modified thermosets have an improved reworkability. The homogeneity of pure DGEBA and modified thermosets was proved by dynamic thermomechanical analysis and electronic microscopy (FESEM). Addition of star‐like structures led to a more toughened fracture of the thermoset in comparison to pure DGEBA. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

3.
The use of commercially available hyperbranched poly(ethyleneimine)s (Lupasol?, BASF) as polymeric modifiers in diglycidyl ether of bisphenol A thermosetting formulations using 1‐methylimidazole (MI) as anionic initiator has been studied. Poly(ethyleneimine)s can get incorporated into the network structure by condensation of amine and epoxy groups. The excess, over‐stoichiometric epoxy groups can undergo anionic homopolymerization initiated by MI. The thermal, dynamomechanical, and mechanical properties of the resulting materials have been determined using DSC, thermomechanical analysis (TMA), dynamomechanical analysis (DMA), and mechanical testing. The effect of the different amine modifiers on the MI networks, determined by their structure, is complex. Low initiator content and high molecular weight modifiers create significant mobility restrictions, which have a strong effect on the glass transition temperature and the apparent crosslinking density of the cured materials. © 2012 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2012  相似文献   

4.
Novel multiarm star copolymers with poly(?‐caprolactone) (PCL) as the arms and hyperbranched polyethylenimine (HPEI) as the core have been successfully prepared by the tin(II) 2‐ethylhexanoate catalyzed ring‐opening polymerization of ?‐caprolactone (CL) with HPEI used directly as a macroinitiator. Not only primary but also secondary amine groups of HPEI participate in initiating the ring‐opening polymerization of CL with almost 100% initiation efficiency. The average degree of polymerization of the PCL arms can be controlled by the feed ratio of the monomers to the initiating sites. Because of the polarity difference of the PCL arms and HPEI core, the obtained multiarm star polymers display an inverted micellar structure with potential extraction and encapsulation of water‐soluble guests. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 4165–4173, 2006  相似文献   

5.
A series of shape‐memory epoxy thermosets were synthesized by crosslinking diglycidyl ether of bisphenol A with mixtures of commercially available hyperbranched poly(ethyleneimine) and polyetheramine. Thermal, mechanical and shape‐memory properties were studied and the effect on them of the content and structure of the hyperbranched polymer was discussed. Measurements showed that the glass transition temperature can be tailored from 60 °C to 117 °C depending on the hyperbranched polymer content, and all formulations showed an appropriate glassy/rubbery storage modulus ratio. Shape‐memory programming was carried out at TgE′ given the excellent mechanical properties of the materials, with maximum stress and failure strain up to 15 MPa and 60%, respectively. The resulting shape‐memory behavior was excellent, with maximum shape recovery and shape fixity of 98% as well as a fast shape‐recovery rate of 22%/min. The results show that hyperbranched poly(ethyleneimine) as a crosslinking agent can be used to enhance mechanical and shape‐memory properties with different effects depending on the crosslinking density. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 924–933  相似文献   

6.
7.
Novel star‐like hyperbranched polymers with amphiphilic arms were synthesized via three steps. Hyperbranched poly(amido amine)s containing secondary amine and hydroxyl groups were successfully synthesized via Michael addition polymerization of triacrylamide (TT) and 3‐amino‐1,2‐propanediol (APD) with feed molar ratio of 1:2. 1H, 13C, and HSQC NMR techniques were used to clarify polymerization mechanism and the structures of the resultant hyperbranched polymers. Methoxyl poly(ethylene oxide) acrylate (A‐MPEO) and carboxylic acid‐terminated poly(ε‐caprolactone) (PCL) were sequentially reacted with secondary amine and hydroxyl group, and the core–shell structures with poly(1TT‐2APD) as core and two distinguishing polymer chains, PEO and PCL, as shell were constructed. The star‐like hyperbranched polymers have different sizes in dimethyl sulfonate, chloroform, and deionized water, which were characterized by DLS and 1H NMR. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 1388–1401, 2008  相似文献   

8.
Hydroxyl‐terminated poly(butadiene) (HTPB; Mn = 2100 g mol−1) was capped with 30 and 60 wt % of ɛ‐caprolactone to reach amphiphilic triblock copolymers in form of capped poly(butadiene) CPB. The former (CPB30; Mn = 3300 g/mol) is amorphous with a glass temperature of −56 °C. CPB60 (Mn = 4000 g mol−1) is semi‐crystalline with a melting point of 50 °C and a glass transition at −47 °C. The CPBs, HTPB and polycaprolactone diol (Mn = 2000 g mol−1) were used as soft segment components in the preparation of polyurethane elastomers (PUE), using a 1/1 mixture of an MDI prepolymer and uretonimine modified MDI, and hard phase components in form of 1,3‐propane diol, 1,4‐butane diol, and 1,5‐pentane diol. CPB‐based elastomers with 1,4 butane diol (8 wt %) show hard domains as fringed aggregates with a better connection to the continuous phase than the HTPB‐based PUE. The soft segment glass transition temperature (Tg) is at −28 °C for HTPB‐based PUE and at −43 °C for those of CPB. The tensile strength of the CPB30&60‐based PUE is found between 20 and 30 MPa at an elongation at break of 400% and 550%, respectively. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 1162–1172  相似文献   

9.
Morphologies of poly(ε‐caprolactone)‐b‐poly(ethylene glycol)‐b‐poly(ε‐caprolactone) (PCL‐PEG‐PCL) triblock copolymer self‐assemblies in the diluted solution and in gel were studied by atomic force microscopy (AFM). The copolymer self‐assembled into wormlike aggregates, of uniform diameter, in water. The wormlike aggregates arranged in order to form separate clusters in the diluted copolymer solution; at a higher copolymer concentration, the clusters became bigger and bigger, and packed together to form gel. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

10.
11.
Novel poly(ε‐caprolactone)‐b‐poly(ethylene glycol)‐b‐poly(ε‐caprolactone) (PCL‐PEG‐PCL) bearing pendant hydrophobic γ‐(carbamic acid benzyl ester) groups (PECB) and hydrophiphilic amino groups (PECN) were synthesized based on the functionalized comonomer γ‐(carbamic acid benzyl ester)‐ε‐caprolactone (CABCL). The thermal gelation behavior of the amphiphilic copolymer aqueous solutions was examined. The phase transition behavior could be finely tuned via the pendant groups, and an abnormal phenomenon occurred that the sol–gel transition temperature shifted to a higher temperature for PECB whereas a lower temperature for PECN. The micelles percolation was adopted to clarify the hydrogel mechanism, and the effect of the pendant groups on the micellization was further investigated in detail. The results demonstrated that the introduction of γ‐(carbamic acid benzyl ester) pendant groups significantly decreased the crystallinity of the copolymer micelles whereas amino pendant groups made the micelles easy to aggregate. Thus, the thermal gelation of PEG/PCL aqueous solution could be finely tuned by the pendant groups, and the pendant groups modified PEG/PCL hydrogels are expected to have great potential biomedical application. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 2571–2581  相似文献   

12.
Poly(ethylene‐bε‐caprolactone) (PE‐b‐PCL) diblock copolymers were synthesized by ring‐opening polymerization (ROP) of ε‐caprolactone (CL) with α‐hydroxyl‐ω‐methyl polyethylene (PE‐OH) as a macroinitiator and ammonium decamolybdate (NH4)8[Mo10O34] as a catalyst. Polymerization was conducted in bulk (130–150°C) with high yield (87–97%). Block copolymers with different compositions were obtained and characterized by 1H and 13C NMR, MALDI‐TOF, SAXS, and DSC. End‐group analysis by NMR and MALDI‐TOF indicates the formation of α‐hydroxyl‐ω‐methyl PE‐b‐PCL. The PE‐b‐PCL degradation was studied using thermogravimetric analysis (TGA) and alkaline hydrolysis. The PCL block was hydrolyzed by NaOH (4M), without any effect on the PE segment. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

13.
Per‐2,3‐acetyl‐β‐cyclodextrin with seven primary hydroxyl groups was synthesized by selective modification and used as multifunctional initiator for the ring‐opening polymerization of ε‐caprolactone (CL). Well‐defined β‐cyclodextrin‐centered seven‐arm star poly(ε‐caprolactone)s (CDSPCLs) with narrow molecular weight distributions (≤1.15) have been successfully prepared in the presence of Sn(Oct)2 at 120 °C. The molecular weight of CDSPCLs was characterized by end group 1H NMR analyses and size‐exclusion chromatography (SEC), which could be well controlled by the molar ratio of the monomer to the initiator. Furthermore, amphiphilic seven‐arm star poly(ε‐caprolactone‐b‐ethylene glycol)s (CDSPCL‐b‐PEGs) were synthesized by the coupling reaction of CDSPCLs with carboxyl‐terminated mPEGs. 1H NMR and SEC analyses confirmed the expected star block structures. Differential scanning calorimetry analyses suggested that the melting temperature (Tm), the crystallization temperature (Tc), and the crystallinity degree (Xc) of CDSPCLs all increased with the increasing of the molecular weight, and were lower than that of the linear poly(ε‐caprolactone). As for CDSPCL‐b‐PEGs, the Tc and Tm of the PCL blocks were significantly influenced by the PEG segments in the copolymers. Moreover, these amphiphilic star block copolymers could self‐assemble into spherical micelles with the particle size ranging from 10 to 40 nm. Their micellization behaviors were characterized by dynamic light scattering and transmission electron microscopy. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 6455–6465, 2008  相似文献   

14.
Block copolymers of ethylene oxide and ε‐caprolactone were synthesized by microwave‐assisted polymerization of ε‐caprolactone with polyethylene glycol monomethyl ethers as initiator. The samples thus obtained were characterized by two‐dimensional liquid chromatography with liquid chromatography at critical conditions as the first and liquid exclusion adsorption chromatography as the second dimension. A full baseline separation of all oligomers could be achieved in both dimensions.  相似文献   

15.
Low molar mass hyperbranched polyesters were prepared by polycondensation of 1,1,1‐tris(hydroxymethyl)ethane and various dimethyl esters of aliphatic dicarboxylic acids in bulk. The usefulness of nontoxic bismuth salts as transesterification catalysts for these polycondensations was studied. The maximum conversion increased, and the reaction time decreased in the following sequence of increasing reactivity: dimethyl sebacate < adipate < glutarate < succinate. Regardless of the monomer combination, gelation occurred at conversions > 91.5%. The hyperbranched structure was proven by 1H NMR spectroscopy and the absence of cyclic elements by MALDI‐TOF mass spectrometry. Quantitative acylation of all CH2OH groups was achieved with an excess of acetic anhydride or methycrylic anhydride. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 231–238, 2009  相似文献   

16.
A series of novel amphiphilic brush‐dendritic‐linear poly[poly(ethylene glycol) methyl ether methacrylate]‐b‐polyamidoamine‐b‐poly(ε‐caprolactone) copolymers (PPEGMEMA‐b‐Dmb‐PCL) (m = 1, 2, and 3: the generation number of dendron) were synthesized by the combination techniques of click chemistry, atom transfer radical polymerization (ATRP), and ring‐opening polymerization (ROP). The brush‐dendritic copolymers bearing hydrophilic brush PPEGMEMA and hydrophobic dendron polyamidoamine protected by the tert‐butoxycarbonyl (Boc) groups [Dm‐(Boc) (m = 1, 2, and 3)] were for the first time prepared by ATRP of poly(ethylene glycol) methyl ether methacrylate monomer (PEGMEMA) initiated with the dendron initiator, which was prepared from 2′‐azidoethyl‐2‐bromoisobutyrate (AEBIB) and Dm‐(Boc) terminated with a clickable alkyne by click chemistry. Then, the brush‐dendritic copolymers with primary amine groups (PPEGMEMA‐b‐Dm) were obtained from the removal of the protected Boc groups of the brush‐dendritic copolymers in the presence of trifluoroacetic acid. The brush‐dendritic‐linear PPEGMEMA‐b‐Dmb‐PCL copolymers were synthesized from ROP of ε‐caprolactone monomer using PPEGMEMA‐b‐Dm as the macroinitiators and stannous octoate as catalyst in toluene at 130 °C. To the best of our knowledge, this is the first report that integrates hydrophilic brush polymer PPEGMEMA with hydrophobic polyamidoamine (PAMAM) dendron and PCL to form amphiphilic brush‐dendritic‐linear copolymers. The amphiphilic brush‐dendritic‐linear copolymers can self‐assemble into spherical micellar structures in aqueous solution. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

17.
Nontoxic and biodegradable poly(?‐caprolactone)‐b‐poly(ethylene glycol)‐b‐poly(?‐caprolactone) triblock copolymers were synthesized by the solution polymerization of ?‐caprolactone in the presence of poly(ethylene glycol). The chemical structure of the resulting triblock copolymer was characterized with 1H NMR and gel permeation chromatography. In aqueous solutions of the triblock copolymers, the micellization and sol–gel‐transition behaviors were investigated. The experimental results showed that the unimer‐to‐micelle transition did occur. In a sol–gel‐transition phase diagram obtained by the vial‐tilting method, the boundary curve shifted to the left, and the gel regions expanded with the increasing molecular weight of the poly(?‐caprolactone) block. In addition, the hydrodynamic diameters of the micelles were almost independent of the investigated temperature (25–55 °C). The atomic force microscopy results showed that spherical micelles formed at the copolymer concentration of 2.5 × 10?4 g/mL, whereas necklace‐like and worm‐like shapes were adopted when the concentration was 0.25 g/mL, which was high enough to form a gel. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 605–613, 2007  相似文献   

18.
Novel biodegradable network polyesters were prepared from multifunctional aromatic carboxylic acids [trimesic acid (Y), pyromellic acid (X), and mellic acid (YM)] and poly(?‐caprolactone) (PCL) diols with molecular weights of 530, 1250, and 2000. Prepolymers prepared by a melt polycondensation method were cast from dimethylformamide solutions and postpolymerized at 220 °C for various times to form a network. The resultant films were transparent, flexible, and insoluble in organic solvents. The network polyesters obtained were characterized by infrared absorption spectra, wide‐angle X‐ray diffraction analysis, density measurements, differential scanning calorimetry, thermomechanical analysis, and tensile testing. Some network polyester films, including YPCL1250, XPCL1250, and YMPCL2000, showed elastomeric properties with high ultimate elongation and low tensile modulus. The enzymatic degradation was measured by the weight loss of the network polyester films in a buffer solution with Rhizopus delemar lipase at 37 °C. The degree and rate of degradation increased with the increasing molecular weight of the PCL diols, but they decreased in the order of YPCL > XPCL > YMPCL because of the increase in the crosslinking densities of the network films. The degraded products after enzymatic degradation showed that the ester linkage of the PCL component and the aromatic ester linkage between Y and PCL diols were hydrolyzed. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 4523–4529, 2002  相似文献   

19.
Fabrication of biodegradable composites applicable as hard tissue substitutes consisting of poly(ε‐caprolactone fumarate) (PCLF), methacrylic acid (MAA), and hydroxyapatite (HA) was investigated. PCLF macromers were synthesized by reaction of PCL diol with fumaryl chloride in the presence of propylene oxide and characterized by gel permeation chromatography, FTIR, and 1H NMR spectroscopy. Composites were fabricated by incorporating HA as inorganic filler in PCLF matrix which followed by thermal curing of the composition using benzoyl peroxide and MAA as a free radical initiator and reactive diluent, respectively. Uniform distribution of the fine ceramic phase in the polymer matrix was elucidated by scanning electron microscopy. The effects of the initial macromer molecular weight and the filler volume fraction on mechanical properties and cytotoxicity of the composites were also examined. Significant enhancement in the mechanical properties was observed upon increasing HA content and/or initial PCLF molecular weight. The biocompatibility of the specimens was also improved with increasing ceramic phase. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

20.
pH‐responsive methoxy poly(ethylene glycol)‐b‐poly(ε‐caprolactone) bearing pendant carboxyl groups mPEG‐b‐P(2‐CCL‐co‐6‐CCL) was synthesized based on our newly monomer benzyloxycarbonylmethly functionalized ε‐caprolactone. Their structure was confirmed by 1H NMR, 13C NMR, and Fourier transform infrared spectrum spectra. In addition, SEC results indicated that the copolymers had a relatively narrow polydispersity. WXRD and DSC demonstrated that the introduction of carboxymethyl groups had significant effect on the crystallinity of the copolymers. Furthermore, the solution behavior of mPEG‐b‐P(2‐CCL‐co‐6‐CCL) has been studied by various methods. The results indicated that mPEG‐b‐P(2‐CCL‐co‐6‐CCL) had a rich pH‐responsive behavior and the micelles could be formed by pH induction, and the mPEG‐b‐P(2‐CCL‐co‐6‐CCL) could existed as unimers, micelles or large aggregates in different pH range accordingly. The mechanism of which was supposed to depend on the counteraction between the hydrophobic interaction from PCL and the ionization of the carboxyl groups along the polymer chain. Moreover, the mPEG‐b‐P(2‐CCL‐co‐6‐CCL) copolymers displayed good biocompatibility according to the preliminary cytotoxicity study. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 188–199  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号