首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A series of comb‐type polycarbosilanes of the type [Si(CH3)(OR)CH2]n {where R = (CH2)mR′, R′ = ? O‐p‐biphenyl? X [X = H (m = 3, 6, 8, or 11) or CN (m = 11)], and R′ = (CF2)7CF3 (m = 4)} were prepared from poly(chloromethylsilylenemethylene) by reactions with the respective hydroxy‐terminated side chains in the presence of triethylamine. The product side‐chain polymers were typically greater than 90% substituted and, for R′ = ? O‐p‐biphenyl? X derivatives, they exhibited phase transitions between 27 and 150 °C involving both crystalline and liquid‐crystalline phases. The introduction of the polar p‐CN substituent to the biphenyl mesogen resulted in a substantial increase in both the isotropization temperature and the liquid‐crystalline phase range with respect to the corresponding unsubstituted biphenyl derivative. For R = (CH2)11? O‐biphenyl side chains, an analogous side‐chain liquid‐crystalline (SCLC) polysiloxane derivative of the type [Si(CH3)(O(CH2)11? O‐biphenyl)O]n was prepared by means of a catalytic dehydrogenation reaction. In contrast to the polycarbosilane bearing the same side chain, this polymer did not exhibit any liquid‐crystalline phases but melted directly from a crystalline phase to an isotropic liquid at 94 °C. Similar behavior was observed for the polycarbosilane with a fluorocarbon chain, for which a single transition from a crystalline phase to an isotropic liquid was observed at ?0.7 °C. The molecular structures of these polymers were characterized by means of gel permeation chromatography and high‐resolution NMR studies, and the crystalline and liquid‐crystalline phases of the SCLC polymers were identified by differential scanning calorimetry, polarized optical microscopy, and X‐ray diffraction. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 984–997, 2003  相似文献   

2.
Copolymerization of (4‐hexylphenyl)allene and of (4‐dodecylphenyl)allene with carbon monoxide (1 atm) catalyzed by Rh[η3‐CH(Ar′)C{C(CHAr′)CH2C (CHAr′)CH2CH2CHCHAr′}CH2](PPh3)2 (A; Ar′ = C6H4OMe‐p) gives the corresponding polyketones: I‐[—CO—C(CHAr)—CH2—]n [1: Ar = C6H4C6H13p, 2 : Ar = C6H4C12H25p; I = CH2C(CHAr′)C(CHAr′)CH2C(CHAr′)CH2CH2CHCHAr′]. Molecular weights of the polyketone prepared from (4‐hexylphenyl)allene and CO are similar to the calculated from the monomer to initiator ratios until the molecular weight reaches to 45,000, indicating the living polymerization. Melting points of the polyketones I‐[—CO—C(CHC6H4R‐p)—CH2—]n (n = ca. 100) increase in the order R = C12H25 < C6H13 < C4H9 < CH3 < H. Block and random copolymerization of phenylallene and (4‐alkylphenyl)allene with carbon monoxide gives the new copoly‐ ketones. The polymerization of a mixture of (4‐methylphenyl)allene and smaller amounts of bis(allenyl)benzene under CO afforded the polyketone with a crosslinked structure. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 1505–1511, 2000  相似文献   

3.
A novel, water‐soluble Rh complex, (nbd)Rh[PPh2(m‐NaOSO2C6H4)] [C(Ph)?CPh2] ( 1 ) was synthesized by the reaction of [(nbd)RhCl]2, Ph2P(m‐NaOSO2C6H4) and Ph2C?C(Ph)Li, whose structure was determined by NMR and IR spectroscopies. The Rh catalyst 1 induced the polymerization of phenylacetylene (PA) in water to give two kinds of polymers; one was soluble in organic solvents such as tetrahydrofuran (THF) and CHCl3, and the other was insoluble in common organic solvents. The polymerization of sodium p‐ethynylbenzoate (p‐NaOCO‐PA) homogeneously proceeded with 1 in water at 60 °C to give the polymer in high yield. Poly(p‐NaOCO‐PA) was treated with 1 N HCl and then reacted with (CH3)3SiCHN2 to obtain poly(p‐MeOCO‐PA). The methyl‐esterified polymer was insoluble in THF and CHCl3, which suggests that the formed poly(p‐MeOCO‐PA) has cis–cisoidal structure. The polymer obtained from the polymerization of [p‐CH3(OCH2CH2)2O2CC6H4]C?CH with 1 in water was soluble in methanol, ethanol, and THF, and partly soluble in water. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 2100–2105, 2004  相似文献   

4.
The N,N,O‐cobalt(II), [2,3‐{C4H8C(NAr)}:5,6‐{C4H8C(O)}C5HN]CoCl2 (Ar = 2,6‐(CHPh2)2‐4‐MeC6H2 Co1 , 2,6‐(CHPh2)2‐4‐EtC6H2 Co2 , 2,6‐(CHPh2)2‐4‐ClC6H2 Co3 , 2,6‐(CHPh2)2‐4‐FC6H2 Co4 ) and N,N,O‐iron(II) complexes, [2,3‐{C4H8C(NAr)}:5,6‐{C4H8C(O)}C5HN]FeCl2 (Ar = 2,6‐(CHPh2)2‐4‐MeC6H2 Fe1 , 2,6‐(CHPh2)2‐4‐EtC6H2 Fe2 , 2,6‐(CHPh2)2‐4‐ClC6H2 Fe3 , 2,6‐(CHPh2)2‐4‐FC6H2 Fe4 ), each containing one sterically enhanced but electronically modifiable N‐2,6‐dibenzhydryl‐4‐R2‐phenyl group, have been prepared by a one‐pot template approach using α,α′‐dioxo‐2,3:5,6‐bis(pentamethylene)pyridine, the corresponding aniline along with the respective cobalt or iron salt in acetic acid. Distorted square pyramidal geometries are a feature of the molecular structures of Co1 – Co4 . Upon activation with MAO or MMAO, Co1 – Co4 show good activities (up to 2.2 × 105 g mol?1(Co) h?1) affording short chain oligomers (C4–C30) with good α‐olefin selectivity. By contrast, Fe1 – Fe4 , in the presence of MMAO, displayed moderate activities (up 10.9 × 104 g(PE) mol?1(Fe) h?1) for ethylene polymerization forming low‐molecular‐weight linear polymers (up to 13.0 kg mol?1) incorporating saturated n‐propyl and i‐butyl chain ends. For both cobalt and iron, the precatalysts incorporating the more electron withdrawing 4‐R2‐substituents [Cl ( Co3 / Fe3 ), F ( Co4 / Fe4 )] deliver the best catalytic activities, while with cobalt, these types of substituents additionally broaden the oligomeric distribution. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55 , 3980–3989  相似文献   

5.
宋礼成  张文雄  胡青眉 《中国化学》2002,20(11):1421-1429
IntroductionTherehasbeenrecentresearchinterestincrystalen gineeringandthedesignofsupramoleculararchitectures .1Byselectingthechemicalstructureofligandsandtheco ordinationgeometryoftransitionmetalions ,theorganic/inorganichybridmaterialsmayyieldaseriesofn…  相似文献   

6.
Ti[O(CH2)4OCH?CH2]4, used for the ring‐opening polymerization (ROP) of ε‐caprolactone, was synthesized through the ester‐exchange reaction of titanium n‐propoxide and 1,4‐butanediol vinyl ether, and its chemical structure was confirmed by nuclear magnetic resonance (1H NMR) and thermogravimetric analysis (TGA). The mechanism and kinetics of Ti[O(CH2)4OCH?CH2]4‐initiated bulk polymerization of ε‐caprolactone were investigated. The results demonstrate that Ti[O (CH2)4OCH?CH2]4‐initiated polymerization of ε‐caprolactone proceeds through the coordination‐insertion mechanism, and all the four alkoxide arms in Ti[O (CH2)4OCH?CH2]4 share a similar activity in initiating ROP of ε‐caprolactone. The polymerization process can be well predicted by the obtained kinetic parameters, and the activation energy is 106 KJ/mol. Then, the rheological method was employed to investigate the feasibility of producing the crosslinked poly(ε‐caprolactone)‐poly (n‐butyl acrylate) network by using Ti[O(CH2)4OCH?CH2]4 as the ROP initiator. The tensile test demonstrates that the in situ generated crosslinked PCL‐PBA network in PMMA matrix provides the possibility of ameliorating the tensile properties of PMMA. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 7773–7784, 2008  相似文献   

7.
The title compound, [Co(C5H9N)4(H2O)2](ClO4)2, crystallizes in the monoclinic space group C2/m. The cation has space‐group‐imposed 2/m symmetry, while the perchlorate ion is disordered about a mirror plane. The two slightly non‐equivalent Co—C bonds [1.900 (3) and 1.911 (3) Å] form a rectangular plane, with a C—Co—C bond angle of 86.83 (11)°, and the linear O—Co—O C2 axis is perpendicular to this plane. The C[triple‐bond]N bond lengths are 1.141 (4) Å and the Co—C[triple‐bond]N and C[triple‐bond]N—C angles average 175.5 (4)°. The perchlorate counter‐ions are hydrogen bonded to the water molecules. The title compound is the first example of four alkyl isocyanide ligands coordinating CoII upon initial reaction of Co(ClO4)2·6H2O/EtOH with alkyl isocyanide. In all other known examples, five alkyl isocyanide molecules are coordinated, as in [(RNC)5Co—Co(CNR)5](ClO4)4 (R = Me, Et, CHMe2, CH2Ph, C4H9n or C6H11) or [Co(CNC8H17t)5](ClO4)2. This complex, therefore, is unique and somewhat unexpected.  相似文献   

8.
In this work, 5, 10, 15, 20‐Tetra‐(4‐aminophenyl) porphyrin (TAPP) was used as gelator to prepare metal‐porphyrin porous coordination polymer (PCP) via solvothermal process, Soxhlet extraction and supercritical CO2 extraction. Firstly, the metal‐porphyrin organic gel (MOG) was prepared as intermediate with solvothermal method. The generation of gels is associated with many factors. When four acetates [Co(Ac)2?4H2O, Zn(Ac)2?2H2O, Mn(Ac)2?4H2O and Ni(Ac)2?7H2O] reacted with TAPP, only the reaction between Co(Ac)2?4H2O and TAPP could form desired metal‐porphyrin organic gel. The influences of solvent, concentration and anions were investigated in the gelation process. Secondly, the residual reactants and solvent molecules in MOG were removed through Soxhlet extraction and supercritical CO2 extraction. The Co‐PCP is an amorphous material with a hierarchical porous structure can effectively catalyze the oxidation of ethylbenzene and also exhibits a strong adsorptive capacity for the strong‐polar solvent molecules.  相似文献   

9.
The molecular structures of blue dichloro‐tetrakis(acrylamide) cobalt(II), [Co{O‐OC(NH2)CH=CH2}4Cl2] ( 1 ) and pink hexakis(acrylamide)cobalt(II) tetrachlorocobaltate(II), [Co{O‐OC‐(NH2)CH=CH2}6][CoCl4] ( 2 ), characterized by single X‐ray diffraction, IR spectroscopy and elemental analyses, are described. The coordination of CoII in 1 involves a tetragonally distorted octahedral structure with four O‐donor atoms of acrylamide in the equatorial positions and two chloride ions in the apical positions. The second complex 2 in ionic form contains CoII cations surrounded by an octahedral array of O‐coordinated acrylamide ligands, accompanied by a [CoCl4]2? anion.  相似文献   

10.
Three new metal coordination complexes, namely, [Co ( DPE )(H2O)4]( DPE )( BS )2 ( 1 ), [Co ( DPE )2(H2O)4]( ABS )2 ( 2 ), [Co ( DPE )(H2O)4]( MBS )2(CH3OH)2 ( 3 ) [ DPE = (E)-1,2-di (pyridin-4-yl) ethene, BS = phenyl sulfonic acid, ABS = p-aminobenzene sulfonic acid, MBS = p-methylbenzene sulfonic acid] were obtained under hydrothermal conditions. Complexes 1 - 3 were structurally characterized by X-ray single-crystal diffraction, powder X-ray diffraction and IR. Complexes 1 and 3 exhibit a one-dimensional chain structure, and complex 2 does a zero-dimensional one. These three complexes further generate a three-dimensional supramolecular architecture via strong hydrogen bonding interactions and packing interactions. These three metal coordination complexes show high catalytic performance for green synthesis of a variety of 3,4-dihydropyrimidin-2(1H)-ones through the Biginelli reactions, which show several advantages such as excellent yields, short reaction times, eco-friendly synthesis conditions, and simple isolated workup procedure. Interestingly, the order of catalytic activities for these catalysts is the following: 3 > 1 > 2 , which can be ascribed to the acidities and hydrophobic interactions of phenyl sulfonate groups.  相似文献   

11.
The molecular structure of the phase—stable at room temperature—for the polymer with formula [ p C6H4 COO p C6H3(R) p C6H3(R) OOC p C6H4 O (CH2)10O ]x, with R =  CH2 CHCH2, is reported. The cell is hexagonal (a = b = 13.43 Å, c = 33.3 Å, γ = 120°), space group P63, six chains per unit cell (dcalcd = 1.23 g cm−3). The six chains are packed together to give a bundle with the center of mass set at the origin of the unit cell. The allyl groups are placed inside the bundle, thus explaining the unexpected reactivity of the double bonds to give crosslinking when fiber samples are annealed in the solid state. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 1601–1607, 1999  相似文献   

12.
Poly(1‐alkyne)s containing azobenzene pendant groups with different lengths of the spacer and terminal alkyloxy group {? [HC?C(CH2)mOCO? C6H4? N?N? C6H4? OCpH2p+1]n? , where m = 1, 2, 3, or 9 and p = 4, 7, or 12} were synthesized in satisfactory yields with the [Rh(nbd)Cl]2–Et3N catalyst. All the polymers were soluble in common organic solvents such as CHCl3 and tetrahydrofuran. Their structures and properties were characterized and evaluated with IR, NMR, thermogravimetric analysis, UV, and optical‐limiting and nonlinear optical analyses. All the polymers were thermally stable and decomposed at temperatures as high as ~300 °C. The optical‐limiting and nonlinear optical properties of the polymers were sensitive to their molecular structures. Polymers having shorter spacer lengths and longer terminal groups showed better performances and larger third‐order nonlinear optical susceptibility (up to 1.34 × 10?10 esu). © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 2346–2357, 2006  相似文献   

13.
The synthesis and a partial characterization of segmented liquid crystalline polymers with 3,3′-diallyl-4,4′-dihydroxybiphenyl unit in the rigid moiety is reported. The general formula of polymers is [-p-C6H4-COO-p-C6H3(R)-p-C6H3(R)-OOC-p-C6H4-O-(CH2)nO-]x, with n = 6, 8, 10, 12, and R =  CH2 CHCH2. All polymers have nematic liquid-crystalline behavior. At room temperature, annealed fiber samples of polymers show a complex polymorphism. Three phases have been isolated with very large unit cells accommodating 6 or 12 chains. The projection of the molecular packing in a plane perpendicular to the c axis is characterized by the organization of chains in a two-dimensional hexagonal or quasi-hexagonal array. © 1998 John Wiley & Sons, Inc. J. Polym. Sci. B Polym. Phys. 36: 2371–2378, 1998  相似文献   

14.
The two isomorphous title compounds, [1,5,9‐tris(2‐aminoethoxy)‐3,7,11‐trihydroxy‐3,7,11‐tribora‐1,5,9‐triborata‐2,4,6,8,10,12‐hexaoxa‐13‐oxoniatricyclo[7.3.1.05,13]tridecane]cobalt(II), [Co(C6H21B6N3O13)] or Co{B6O7(OH)3[O(CH2)2NH2]3}, and the NiII analogue, [Ni(C6H21B6N3O13)], each consist of an MII cation and an inorganic–organic hybrid {B6O7(OH)3[O(CH2)2NH2]3}2− anion. The MII cation lies on a crystallographic threefold axis (as does one O atom) and is octahedrally coordinated by three N atoms from the organic component. Three O atoms covalently link the B–O cluster and the organic component. Molecules are connected to one another through N—H...O and O—H...O hydrogen bonds, forming a three‐dimensional supramolecular network.  相似文献   

15.
A variety of well‐defined tetra‐armed star‐shaped poly(N‐substituted p‐benzamide)s, including block poly(p‐benzamide)s with different N‐substituents, and poly(N‐substituted m‐benzamide)s, were synthesized by using porphyrin‐cored tetra‐functional initiator 2 under optimized polymerization conditions. The initiator 2 allowed discrimination of the target star polymer from concomitantly formed linear polymer by‐products by means of GPC with UV detection, and the polymerization conditions were easily optimized for selective synthesis of the star polybenzamides. Star‐shaped poly(p‐benzamide) with tri(ethylene glycol) monomethyl ether (TEG) side chain was selectively obtained by polymerization of phenyl 4‐{2‐[2‐(2‐methoxyethoxy)ethoxy]ethylamino}benzoate ( 1b ′) with 2 at ?10 °C in the case of [ 1b ′]0/[ 2 ]0 = 40 and at 0 °C in the case of [ 1b ′]0/[ 2 ]0 = 80. Star‐shaped poly(p‐benzamide) with 4‐(octyloxy)benzyl (OOB) substituent was obtained only when methyl 4‐[4‐(octyloxy)benzylamino]benzoate ( 1c ) was polymerized at 25 °C at [ 1c ]0/[ 2 ]0 = 20. On the other hand, star‐shaped poly(m‐benzamide)s with N‐butyl, N‐octyl, and N‐TEG side chains were able to be synthesized by polymerization of the corresponding meta‐substituted aminobenzoic acid alkyl ester monomers 3 at 0 °C until the ratio of [ 3 ]0/[ 2 ]0 reached 80. However, star‐shaped poly(m‐benzamide)s with the OOB group were contaminated with linear polymer even when the feed ratio of the monomer 3d to 2 was 20. The UV–visible spectrum of an aqueous solution of star‐shaped poly(p‐benzamide) with TEG side chain indicated that the hydrophobic porphyrin core was aggregated. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

16.
As representative porphyrin model compounds, the structures of `picket‐fence' porphyrins have been studied intensively. The title solvated complex salt {systematic name: (4,7,13,16,21,24‐hexaoxa‐1,10‐diazabicyclo[8.8.8]hexacosane)potassium(I) [5,10,15,20‐tetrakis(2‐tert‐butanamidophenyl)porphyrinato]iron(II) n‐hexane monosolvate}, [K(C18H36N2O6)][Fe(C64H64N8O4)Cl]·C6H14 or [K(222)][Fe(TpivPP)Cl]·C6H14 [222 is cryptand‐222 or 4,7,13,16,21,24‐hexaoxa‐1,10‐diazabicyclo[8.8.8]hexacosane, and TpivPP is meso‐α,α,α,α‐tetrakis(o‐pivalamidophenyl)porphyrinate(2−)], [K(222)][Fe(TpivPP)Cl]·C6H14, is a five‐coordinate high‐spin iron(II) picket‐fence porphyrin complex. It crystallizes with a potassium cation chelated inside a cryptand‐222 molecule; the average K—O and K—N distances are 2.81 (2) and 3.05 (2) Å, respectively. One of the protecting tert‐butyl pickets is disordered. The porphyrin plane presents a moderately ruffled distortion, as suggested by the atomic displacements. The axial chloride ligand is located inside the molecular cavity on the hindered porphyrin side and the Fe—Cl bond is tilted slightly off the normal to the porphyrin plane by 4.1°. The out‐of‐plane displacement of the metal centre relative to the 24‐atom mean plane (Δ24) is 0.62 Å, indicating a noticeable doming of the porphyrin core.  相似文献   

17.
Two different one‐dimensional supramolecular chains with CoII cations have been synthesized based on the semi‐rigid ligand 2‐[1‐(pyridin‐4‐ylmethyl)‐1H‐benzimidazol‐2‐yl]quinoline (L), obtained by condensation of 2‐(1H‐benzimidazol‐2‐yl)quinoline and 4‐(chloromethyl)pyridine hydrochloride. Starting from different CoII salts, two new compounds have been obtained, viz. catena‐poly[[[dinitratocobalt(II)]‐μ‐2‐[1‐(pyridin‐4‐ylmethyl)‐1H‐benzimidazol‐2‐yl]quinoline] dichloromethane monosolvate acetonitrile monosolvate], {[Co(NO3)2(C22H16N4)]·CH2Cl2·CH3CN}n, (I) and catena‐poly[[[dichloridocobalt(II)]‐μ‐2‐[1‐(pyridin‐4‐ylmethyl)‐1H‐benzimidazol‐2‐yl]quinoline] methanol disolvate], {[CoCl2(C22H16N4)]·2CH3OH}n, (II). In (I), the CoII centres lie in a distorted octahedral [CoN3O3] coordination environment. {Co(NO3)2L}n units form one‐dimensional helical chains, where the L ligand has different directions of twist. The helical chains stack together via interchain π–π interactions to form a two‐dimensional sheet, and another type of π–π interaction further connects neighbouring sheets into a three‐dimensional framework with hexagonal channels, in which the acetonitrile molecules and disordered dichloromethane molecules are located. In (II), the CoII centres lie in a distorted trigonal–bipyramidal [CoCl2N3] coordination environment. {CoCl2L}n units form one‐dimensional chains. The chains interact via C—H...π and C—H...Cl interactions. The result is that two‐dimensional sheets are generated, which are further linked into a three‐dimensional framework via interlayer C—H...Cl interactions. When viewed down the crystallographic b axis, the methanol solvent molecules are located in an orderly manner in wave‐like channels.  相似文献   

18.
1‐Pentynes containing different amino acid moieties and pendant terminal groups {HC?C(CH2)2CONHC(R′)HCO2CH3, where R′ = CH3, CH2CH(CH3)2, CH2C6H5, and HC?C(CH2)2CONHC[CH2CH(CH2)3]HCO2‐(1R,2S,5R)‐(+)‐menthol} have been designed and synthesized. The polymerizations of the monomers are effected by organorhodium catalysts, giving soluble polymers with moderate molecular weights in satisfactory yields. The structures and properties of the polymers have been characterized and evaluated with infrared, nuclear magnetic resonance, thermogravimetric analysis, circular dichroism, and ultraviolet analyses. All the polymers are thermally stable (≥300 °C) and show strong circular dichroism signals at ~310 nm because of the helicity of the polyene backbone. The circular dichroism and ultraviolet absorptions of the polymers can be tuned with a solvent. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 6190–6201, 2006  相似文献   

19.
The reaction of [RuCl2(PPh3)3] with closo‐[B10H10]2? and C5H5FeC5H4COOH (FcCO2H) in refluxing CH2Cl2 solution affords three ruthenaborane clusters: [PPh3(H2O)(FcCO2)RuB10H8Cl] (1), [(PPh3)2ClRu(PPh3)(FcCO2)RuB10H9]·0.5CH2Cl2 (2 × 0.5CH2Cl2) and [PPh3(FcCO2)2RuB10H8] (3). All of these compounds are characterized by FT‐IR, NMR spectroscopic techniques, elemental analysis and single‐crystal X‐ray analysis. They are all based on a closo‐type 1:2:4:2:2 {RuB10} stack with the metal occupying the unique six‐connected apical position and can be considered as having isocloso structures derived from the complete capping of the open face of an arachano geometry to give a completely closed deltahedral cluster. Compounds 1 and 2 both have an exo‐polyhedral ferrocenecarboxylate that is attached with one {Ru? O} and one {B? O} bond each, resulting in one exo‐cyclic five‐membered Ru? O? C? O? B ring. There is in addition one exo‐polyhedral ruthenium atom bonded to the center {RuB10} cluster via one {Ru? Ru} linkage and two {RuHµB} bridges, which forms a closed exo‐polyhedral tetrahedron configuration in compound 2. Compound 3 has two exo‐polyhedral ferrocenecarboxylates to form two five‐membered Ru? O? C? O? B rings engendering a symmetrical conformation. All of these new 11‐vertex ruthenaboranes can be considered as having isocloso structures derived from the complete capping of the open face of an arachano geometry to give a completely closed deltahedral cluster. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

20.
A new 1,3,4‐oxadiazole‐containing bispyridyl ligand, namely 5‐(pyridin‐4‐yl)‐3‐[2‐(pyridin‐4‐yl)ethyl]‐1,3,4‐oxadiazole‐2(3H)‐thione (L), has been used to create the novel complexes tetranitratobis{μ‐5‐(pyridin‐4‐yl)‐3‐[2‐(pyridin‐4‐yl)ethyl]‐1,3,4‐oxadiazole‐2(3H)‐thione}zinc(II), [Zn2(NO3)4(C14H12N4OS)2], (I), and catena‐poly[[[dinitratocopper(II)]‐bis{μ‐5‐(pyridin‐4‐yl)‐3‐[2‐(pyridin‐4‐yl)ethyl]‐1,3,4‐oxadiazole‐2(3H)‐thione}] nitrate acetonitrile sesquisolvate dichloromethane sesquisolvate], {[Cu(NO3)(C14H12N4OS)2]NO3·1.5CH3CN·1.5CH2Cl2}n, (II). Compound (I) presents a distorted rectangular centrosymmetric Zn2L2 ring (dimensions 9.56 × 7.06 Å), where each ZnII centre lies in a {ZnN2O4} coordination environment. These binuclear zinc metallocycles are linked into a two‐dimensional network through nonclassical C—H...O hydrogen bonds. The resulting sheets lie parallel to the ac plane. Compound (II), which crystallizes as a nonmerohedral twin, is a coordination polymer with double chains of CuII centres linked by bridging L ligands, propagating parallel to the crystallographic a axis. The CuII centres adopt a distorted square‐pyramidal CuN4O coordination environment with apical O atoms. The chains in (II) are interlinked via two kinds of π–π stacking interactions along [01]. In addition, the structure of (II) contains channels parallel to the crystallographic a direction. The guest components in these channels consist of dichloromethane and acetonitrile solvent molecules and uncoordinated nitrate anions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号