首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Although atom transfer radical polymerization (ATRP) is often a controlled/living process, the growth rate of polymer films during surface‐initiated ATRP frequently decreases with time. This article investigates the mechanism behind the termination of film growth. Studies of methyl methacrylate and methyl acrylate polymerization with a Cu/tris[2‐(dimethylamino)ethyl]amine catalyst system show a constant but slow growth rate at low catalyst concentrations and rapid growth followed by early termination at higher catalyst concentrations. For a given polymerization time, there is, therefore, an optimum intermediate catalyst concentration for achieving maximum film thickness. Simulations of polymerization that consider activation, deactivation, and termination show trends similar to those of the experimental data, and the addition of Cu(II) to polymerization solutions results in a more constant rate of film growth by decreasing the concentration of radicals on the surface. Taken together, these studies suggest that at high concentrations of radicals, termination of polymerization by radical recombination limits film growth. Interestingly, stirring of polymerization solutions decreases film thickness in some cases, presumably because chain motion facilitates radical recombination. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 386–394, 2003  相似文献   

2.
Herein, we report the fabrication of glycidyl methacrylate (GMA) polymeric conjugates of shortened multi‐walled carbon nanotubes (sMWCNT). The synthesis method involves the attachment of initiator on the surface of nanotubes followed by surface initiated atom transfer radical polymerization (SI‐ATRP) of GMA from the initiator‐bound sMWCNT surface. This is achieved by the procedure consisting of three important steps: introduction of amino groups onto the sMWCNT and attachment of polymerization initiator, 2‐bromo‐2‐methylpropinonyl bromide, and polymerization of GMA. The structure and properties of the resultant polymeric conjugates were characterized by Fourier transform infrared (FT‐IR) spectroscopy, Thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), X‐ray diffraction (XRD), atomic force microscopy (AFM), transmission electron microscopy (TEM) and SEM. The FT‐IR analysis of polymeric conjugates shows infrared (IR) peaks characteristic of GMA. AFM, TEM and SEM images clearly show the formation of poly(glycidyl methacrylate)(PGMA) polymer on sMWCNT surface. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

3.
The controlled polymerization of methyl methacrylate (MMA) in bulk was initiated with p‐chlorobenzenediazonium tetrafluoroborate ( 1 ) and Cu(II) or Cu(I)/Cu(II)/N,N,N′,N″,N″‐pentamethyldietylene triamine (PMDETA) complex system at various temperatures (20, 60, and 90 °C). The proposed polymerization mechanism is based on the Meerwein‐type arylation reaction followed by a reverse atom transfer radical polymerization. In this mechanism, aryl radicals formed by the reaction with 1 and Cu(I) and/or PMDETA initiated the polymerization of MMA. The polymerization is controlled up to a molecular weight of 46,000 at 90 °C. Chain extension was carried out to confirm the controlled manner of the polymerization system. In all polymerization systems, the polydispersity index and initiator efficiency ranged from 1.10–1.57 to 0.10–0.21, respectively. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 2019–2025, 2003  相似文献   

4.
This study elucidates the influence of the atom transfer radical polymerization initiator structure, monolayer versus disordered multilayer, on the growth kinetics and the structural transition of poly(methyl methacrylate) (PMMA) brush layers. The multilayer initiator film, prepared by acylation of the electrografted 2‐phenylethanol layer using 2‐bromoisobutyryl bromide, consists of ~4.6 times more tert‐butyl bromide groups compared to monolayer initiator prepared by self assembly technique. The results demonstrate the formation of precursor complex between CuI catalyst and the bromine initiator as a prerequisite step before the onset of polymerization. Furthermore, the PMMA brushes formed by the polymerization from the multilayered initiator layer at 50 °C are 20‐fold thicker compared to the polymerization at 25 °C due to the swelling of the multilayered initiator film. In contrast, the thickness of the PMMA layer on the monolayer initiator is less affected by the polymerization temperature. By varying the initiator density on the surface, the solvent content in the PMMA layer is shown to vary from 15% to 94%, resulting in the transition from concentrated over semidiluted to diluted brushes. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

5.
We present results from kinetic studies on the surface‐initiated atom transfer radical polymerization in the preparation of polymer brush‐coated magnetic particles from a heterogeneous system. It is shown that a controlled reaction behavior and a reproducible surface functionalization with end‐tethered polymers are achieved, although the reaction advances gradually from a biphasic solid–liquid mixture to a stable colloidal dispersion of the nanoobjects. Although the initiator‐functional magnetite nanoparticles initially form a precipitate, the formation of a polymer layer on the particle surface in the course of the reaction contributes to a sterical stabilization in dispersion. We thoroughly investigated the development of the initial heterogeneous system with time and in various concentration regimes by simultaneously monitoring the monomer conversion, molar mass, the hydrodynamic diameter of the nanoobjects, and the magnetite content of the dispersions at different reaction times. The results indicate first‐order chain growth kinetics with respect to the monomer and narrow molar mass distributions, demonstrating good control on the particle architecture. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2009  相似文献   

6.
The synthesis of di‐ and triblock copolymers using atom transfer radical polymerization (ATRP) of n‐butyl acrylate (BA) and methyl methacrylate (MMA) is reported. In particular, synthetic procedures that allow for an easy and convenient synthesis of such block copolymers were developed by using CuBr and CuCl salts complexed with linear amines. Polymerizations were successfully conducted where the monomers were added to the reactor in a sequential manner. Poor cross‐propagation between poly(n‐butyl acrylate) (PBA) macroinitiators and MMA was minimized, and therefore control of molecular weights and distributions was realized, by using halogen exchange—a technique involving the addition of CuCl to the MMA during the chain extension of the PBA macroinitiator. High molecular weight (Mn ∼ 90,000) and low polydispersity (Mw /Mn < 1.35) ABA triblock copolymers were also prepared and their structure and properties in bulk have been preliminary characterized indicating the potential of ATRP for the production of all‐acrylic thermoplastic elastomers. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 2023–2031, 2000  相似文献   

7.
Pristine carbon black was oxidized with nitric acid to produce carboxyl group, and then the carboxyl group was consecutively treated with thionyl chloride and glycol to introduce hydroxyl group. The hydroxyl group on the carbon black surface was reacted with 2‐bromo‐2‐methylpropionyl bromide to anchor atom transfer radical polymerization (ATRP) initiator. The ATRP initiator on carbon black surface was verified by TGA, FTIR, EDS, and elemental analysis. Then, poly (methyl methacrylate) and polystyrene chains were respectively, grown from carbon black surface by surface‐initiated atom transfer radical polymerization (SI‐ATRP) using CuCl/2,2‐dipyridyl (bpy) as the catalyst/ligand combination at 110 °C in anisole. 1H NMR, TGA, TEM, AFM, DSC, and DLS were used to systemically characterize the polymer‐grafted carbon black nanoparticles. Dispersion experiments showed that the grafted carbon black nanoparticles had good solubilities in organic solvents such as THF, chloroform, dichloromethane, DMF, etc. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 3451–3459, 2007  相似文献   

8.
Regenerated cellulose (RC) membranes which have pH modulated permeability have been prepared by anchoring the hydroxyl groups on the membrane surface with 2‐bromoisobutyryl bromide, followed by grafting with acrylic acid (AA) using atom transfer radical polymerization (ATRP). The obtained membranes were analyzed by X‐ray photoelectron spectroscopy (XPS), Fourier transform infrared attenuated total reflection spectrometer (ATR‐FTIR), scanning electron microscopy (SEM), TGA and the results showed that AA had been grafted onto the membrane surfaces successfully. Then the pH modulated permeability properties were tested by water flux measurement. All results show that the pH modulated permeability properties of a RC membrane can be obtained by surface‐initiated ATRP. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

9.
2‐Bromopropionic acid 2‐(4‐phenylazophenyl)ethyl ester, 2‐bromopropionic acid 6‐(4‐phenylazophenoxy)hexyl ester (BPA6), 2‐bromopropionic acid‐(4‐phenylazoanilide), and 2‐bromopropionic acid 4‐[4‐(2‐bromopropionyloxy)phenylazo]phenyl ester (BPPE) were used as initiators with monofunctional or difunctional azobenzene for the heterogeneous atom transfer radical polymerization of methyl methacrylate with a copper(I) chloride/N,N,N,N,N″‐pentamethyldiethylenetriamine catalytic system. The rates of polymerizations exhibited first‐order kinetics with respect to the monomer, and a linear increase in the number‐average molecular weight with increasing monomer conversion was observed for these initiation systems. The polydispersity indices of the polymer were relatively low (1.15–1.44) up to high conversions in all cases. The fastest rate of polymerization and the highest initiation efficiency were achieved with BPA6, and this could be explained by the longer distance between the halogen and azobenzene groups and the better solubility of the BPA6 initiator. The redshifting of the UV absorptions of the polymers only occurred for the BPPE‐initiated system. The intensity of the UV absorptions of the polymers were weaker than those of the corresponding initiators in chloroform and decreased with the increasing molecular weights of the polymers in all cases. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 2358–2367, 2005  相似文献   

10.
The synthesis of 4-arm methyl methacrylate star polymer had been achieved successfully by atom transfer radical polymerization using CuCl as catalyst, 2, 2′-bipyridyl as ligand and pentaerythritol tetrakis (2-bromoisobutyrate) as the initiator. The star polymer was characterized by 1H-NMR and GPC, by which the precise 4-arm structure of the PMMA was confirmed. __________ Translated from Journal of Shaanxi Normal University (Natural Science Edition), 2008, 36(2) (in Chinese)  相似文献   

11.
N‐Bromosuccinimide (NBS) was used as the initiator in the atom transfer radical polymerizations of styrene (St) and methyl methacrylate (MMA). The NBS/CuBr/bipyridine (bpy) system shows good controllability for both polymerizations and yields polymers with polydispersity indexes ranging from 1.18 to 1.25 for St and 1.14 to 1.41 for MMA, depending on the conditions used. The end‐group analysis of poly(MMA) and polystyrene indicated the polymerization is initiated by the succinimidyl radicals formed from the redox reaction of NBS with CuBr/bpy. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 5811–5816, 2004  相似文献   

12.
The direct polymerization of deprotonated acidic monomers in aqueous solutions was achieved via surface‐confined atom transfer radical polymerization (SC‐ATRP) to produce surface‐tethered polyelectrolyte brushes. Layers of poly(itaconic acid), poly(methacrylic acid), and sodium poly(styrene sulfonate) were grown by SC‐ATRP from self‐assembled initiator monolayers of [BrC(CH3)2COO(CH2)11S]2 on gold substrates. The polymer layers were characterized with variable‐angle ellipsometry and external‐reflection Fourier transform infrared spectroscopy. Without intervention, atom transfer radical polymerization catalysts were deactivated by complexation with the deprotonated acidic monomers, disproportionation, and dissociation during the polymerization of these monomers in water; the result was the cessation of polymer growth. The addition of an alkali salt to the reaction media suppressed catalyst deactivation, allowing polymer layers to increase in thickness linearly for longer periods of time with respect to salt‐free conditions. This result suggested an improved degree of polymerization control. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 566–575, 2007  相似文献   

13.
A novel hexafunctional discotic initiator, 2,3,6,7,11,12‐hexakis(2‐bromobutyryloxy)triphenylene (HBTP), was synthesized by the esterification of 2,3,6,7,11,12‐hexahydroxytriphenylene with 2‐bromobutyryl chloride. Atom transfer radical polymerizations of styrene, methyl acrylate, and n‐butyl acrylate were carried out in 50 vol % tetrahydrofuran with HBTP/copper(I) bromide/2,2′‐bipyridyl as an initiation system. The polymers produced had well‐controlled molecular weights and narrow molecular weight distributions (<1.2). On the basis of 1H NMR spectra of the star polymer and its hydrolyzed products, we can conclude that the initiator quantitatively initiated the polymerization of vinyl monomers and that a star polymer with a discotic core was obtained. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 2233–2243, 2001  相似文献   

14.
The atom transfer radical polymerization of methyl methacrylate (MMA) and n‐butyl methacrylate (n‐BMA) was initiated by a poly(ethylene oxide) chloro telechelic macroinitiator synthesized by esterification of poly(ethylene oxide) (PEO) with 2‐chloro propionyl chloride. The polymerization, carried out in bulk at 90 °C and catalyzed by iron(II) chloride tetrahydrate in the presence of triphenylphosphine ligand (FeCl2 · 4H2O/PPh3), led to A–B–A amphiphilic triblock copolymers with MMA or n‐BMA as the A block and PEO as the B block. A kinetic study showed that the polymerization was first‐order with respect to the monomer concentration. Moreover, the experimental molecular weights of the block copolymers increased linearly with the monomer conversion, and the molecular weight distribution was acceptably narrow at the end of the reaction. These block copolymers turned out to be water‐soluble through the adjustment of the content of PEO blocks (PEO content >90% by mass). When the PEO content was small [monomer/macroinitiator molar ratio (M/I) = 300], the block copolymers were water‐insoluble and showed only one glass‐transition temperature. With an increase in the concentration of PEO (M/I = 100 or 50) in the copolymer, two glass transitions were detected, indicating phase separation. The macroinitiator and the corresponding triblock copolymers were characterized with Fourier transform infrared, proton nuclear magnetic resonance, size exclusion chromatography analysis, dynamic mechanical analysis, and differential scanning calorimetry. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 5049–5061, 2005  相似文献   

15.
Poly(ethylene‐g‐styrene) and poly(ethylene‐g‐methyl methacrylate) graft copolymers were prepared by atom transfer radical polymerization (ATRP). Commercially available poly(ethylene‐co‐glycidyl methacrylate) was converted into ATRP macroinitiators by reaction with chloroacetic acid and 2‐bromoisobutyric acid, respectively, and the pendant‐functionalized polyolefins were used to initiate the ATRP of styrene and methyl methacrylate. In both cases, incorporation of the vinyl monomer into the graft copolymer increased with extent of the reaction. The controlled growth of the side chains was proved in the case of poly(ethylene‐g‐styrene) by the linear increase of molecular weight with conversion and low polydispersity (Mw /Mn < 1.4) of the cleaved polystyrene grafts. Both macroinitiators and graft copolymers were characterized by 1H NMR and differential scanning calorimetry. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 2440–2448, 2000  相似文献   

16.
The synthesis of polystyrene‐b‐poly(methyl methacrylate) diblock copolymers with a luminescent ruthenium(II) tris(bipyridine) [Ru(bpy)3] complex at the block junction is described. The macroligand precursor, polystyrene bipyridine‐poly(methyl methacrylate) [bpy(PS–H)(PMMA)], was synthesized via the atom transfer radical polymerization of styrene and methyl methacrylate from two independent, sequentially activated initiating sites. Both polymerization steps resulted in the growth of blocks with sizes consistent with monomer loading and narrow molecular weight distributions (i.e., polydispersity index < 1.3). Subsequent reactions with ruthenium(II) bis(bipyridine) dichloride [Ru(bpy)2Cl2] in the presence of Ag+ generated the ruthenium tris(bipyridine)‐centered diblock, which is of interest for the imaging of block copolymer microstructures and for incorporation into new photonic materials. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 4250–4255, 2002  相似文献   

17.
A series of (di)picolinic acids and their derivates are investigated as novel complexing tridentate or bidentate ligands in the iron‐mediated reverse atom transfer radical polymerization of methyl methacrylate in N,N‐dimethylformamide at 100 °C with 2,2′‐azobisisobutyrontrile as an initiator. The polymerization rates and polydispersity indices (1.32–1.8) of the resulting polymers are dependent on the structures of the ligands employed. Different iron complexes may be involved in iron‐mediated reverse atom transfer radical polymerization, depending on the type of acid used. 1H NMR spectroscopy has been used to study the structure of the resulting polymers. Chain‐extension reactions have been performed to further confirm the living nature of this catalytic system. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 2912–2921, 2006  相似文献   

18.
A trifunctional initiator, 2‐phenyl‐2‐[(2,2,6,6‐tetramethyl)‐1‐piperidinyloxy] ethyl 2,2‐bis[methyl(2‐bromopropionato)] propionate, was synthesized and used for the synthesis of miktoarm star AB2 and miktoarm star block AB2C2 copolymers via a combination of stable free‐radical polymerization (SFRP) and atom transfer radical polymerization (ATRP) in a two‐step or three‐step reaction sequence, respectively. In the first step, a polystyrene (PSt) macroinitiator with dual ω‐bromo functionality was obtained by SFRP of styrene (St) in bulk at 125 °C. Next, this PSt precursor was used as a macroinitiator for ATRP of tert‐butyl acrylate (tBA) in the presence of Cu(I)Br and pentamethyldiethylenetriamine at 80 °C, affording miktoarm star (PSt)(PtBA)2 [where PtBA is poly(tert‐butyl acrylate)]. In the third step, the obtained St(tBA)2 macroinitiator with two terminal bromine groups was further polymerized with methyl methacrylate by ATRP, and this resulted in (PSt)(PtBA)2(PMMA)2‐type miktoarm star block copolymer [where PMMA is poly(methyl methacrylate)] with a controlled molecular weight and a moderate polydispersity (weight‐average molecular weight/number‐average molecular weight < 1.38). All polymers were characterized by gel permeation chromatography and 1H NMR. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 2542–2548, 2003  相似文献   

19.
Hybrid nanoarchitecture of tailor‐made Poly(ethyl acrylate)/clay was prepared by surface‐initiated atom transfer radical polymerization (SI‐ATRP), by tethering ATRP initiator on active hydroxyl group, present in surface as well as in the organic modifier of the clay used. Extensive exfoliation was facilitated by using these initiator modified clay platelets. Poly(ethyl acrylate) chains with controlled polymerization and narrow polydispersities were forced to be grown from within the clay gallery (intergallery) as well as from the outer surface (extragallery) of the clay platelets. The polymer chains attached onto clay surfaces might have the potential to provide the composites with enhanced compatibility in blends with common polymers. Attachment of the initiator on clay platelets was confirmed by Fourier transform infrared spectroscopy (FTIR), X‐ray photoelectron spectroscopy (XPS), elemental analysis, Wide‐angle X‐ray diffraction (WAXD), and microscopic analysis. Finally, end group analysis (by Matrix‐Assisted Laser Desorption Ionization Mass Spectrometry, and chain extension experiment) of the cleaved polymer and morphological study (by WAXD, Transmission Electron Microscopy), performed on the polymer grafted clays examined the effect of grafting on the efficiency of polymerization and the degree of dispersion of clay tactoids in polymer. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 5014–5027, 2008  相似文献   

20.
ABA block copolymers of methyl methacrylate and methylphenylsilane were synthesized with a methodology based on atom transfer radical polymerization (ATRP). The reaction of samples of α,ω‐dihalopoly(methylphenylsilane) with 2‐hydroxyethyl‐2‐methyl‐2‐bromoproprionate gave suitable macroinitiators for the ATRP of methyl methacrylate. The latter procedure was carried out at 95 °C in a xylene solution with CuBr and 2,2‐bipyridine as the initiating system. The rate of the polymerization was first‐order with respect to monomer conversion. The block copolymers were characterized with 1H NMR and 13C NMR spectroscopy and size exclusion chromatography, and differential scanning calorimetry was used to obtain preliminary evidence of phase separation in the copolymer products. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 30–40, 2003  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号