首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
The sequential segregation of Sn and Sb to the surface of a Cu(111) single crystal was measured in the temperature range 400–1100 K by Auger electron spectroscopy. It was found that Sn with the higher diffusion coefficient first segregates to the surface and then is replaced by the slower‐segregating Sb. The results were fitted by a ternary segregation model yielding segregation energies (ΔGSn = 76.3 kJ mol?1, ΔGSb = 95.9 kJ mol?1), interaction parameters (ΩSnCu = 3.8 kJ mol?1, ΩSbCu = 16.2 kJ mol?1, ΩSnSb = ?5.3 kJ mol?1) and diffusion coefficients (D0(Sn) = 1.8 × 10?5 m2 s?1, ESn = 173 kJ mol?1, D0(Sb) = 6.0 × 10?5 m2 s?1, ESb = 205 kJ mol?1) for both species. The validity of the interaction coefficients and segregation energies was verified using the Guttman equations for equilibrium segregation in ternary systems. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

2.
The kinetics of decomposition of [Alg · Mn VIO42?] intermediate complex have been investigated spectrophotometrically at a constant ionic strength of 0.5 mol dm?3. The decomposition reaction was found to be first-order in the intermediate concentration. The results showed that the rate of reaction was base-catalyzed. The kinetic parameters have been evaluated and found to be ΔS? = ?103.88±6.18 J mol?1 K?1, ΔH? = 51.61 ± 1.02 kJ mol?1, and ΔG? = 82.57 ± 2.86 kJ mol?1, respectively. A reaction mechanism consistent with the results is discussed. © 1993 John Wiley & Sons, Inc.  相似文献   

3.
Cyclohexane and piperidine ring reversal in 1-(3-pentyloxyphenylcarbamoyloxy)-2-dialkylaminocyclohexanes was investigated by 13C NMR. An unusually low conformational energy ΔG = 0.59 kJ mol?1 and activation parameters ΔG218 = 43.8 ± 0.4 kJ mol?1, ΔH = 48.9 ± 2.5 kJ mol?1 and ΔS = 23 ± 9 J mol?1 K?1 were found for the diequatorial to diaxial transition of the cyclohexane ring in the trans-pyrrolidinyl derivative. In the trans-piperidinyl derivative, ΔG222 = 44.7 ± 0.5 KJ mol?1, ΔH = 55.7 ± 6.3 kJ mol?1 and ΔS = 51 ± 21 J mol?1 K?1 was found for the piperidine ring reversal from the non-equivalence of the α-carbons.  相似文献   

4.
The kinetics of decomposition of an [Pect·MnVIO42?] intermediate complex have been investigated spectrophotometrically at various temperatures of 15–30°C and a constant ionic strength of 0.1 mol dm?3. The decomposition reaction was found to be first‐order in the intermediate concentration. The results showed that the rate of reaction was base‐catalyzed. The kinetic parameters have been evaluated and found to be ΔS = ? 190.06 ± 9.84 J mol?1 K?1, ΔH = 19.75 ± 0.57 kJ mol?1, and ΔG = 76.39 ± 3.50 kJ mol?1, respectively. A reaction mechanism consistent with the results is discussed. © 2002 Wiley Periodicals, Inc. Int J Chem Kinet 35: 67–72, 2003  相似文献   

5.
The kinetics of the interactions between three sulfur‐containing ligands, thioglycolic acid, 2‐thiouracil, glutathione, and the title complex, have been studied spectrophotometrically in aqueous medium as a function of the concentrations of the ligands, temperature, and pH at constant ionic strength. The reactions follow a two‐step process in which the first step is ligand‐dependent and the second step is ligand‐independent chelation. Rate constants (k1 ~10?3 s?1 and k2 ~10?5 s?1) and activation parameters (for thioglycolic acid: ΔH1 = 22.4 ± 3.0 kJ mol?1, ΔS1 = ?220 ± 11 J K?1 mol?1, ΔH2 = 38.5 ± 1.3 kJ mol?1, ΔS2 = ?204 ± 4 J K?1 mol?1; for 2‐thiouracil: ΔH1 = 42.2 ± 2.0 kJ mol?1, ΔS1 = ?169 ± 6 J K?1 mol?1, ΔH2 = 66.1 ± 0.5 kJ mol?1, ΔS2 = ?124 ± 2 J K?1 mol?1; for glutathione: ΔH1 = 47.2 ± 1.7 kJ mol?1, ΔS1 = ?155 ± 5 J K?1mol?1, ΔH2 = 73.5 ± 1.1 kJ mol?1, ΔS2 = ?105 ± 3 J K?1 mol?1) were calculated. Based on the kinetic and activation parameters, an associative interchange mechanism is proposed for the interaction processes. The products of the reactions have been characterized from IR and ESI mass spectroscopic analysis. A rate law involving the outer sphere association complex formation has been established as   相似文献   

6.
2D 1H-1H EXSY NMR spectroscopy show that the free energy of activation ΔG in six 3-allyl-3-borabicyclo[3.3.1]nonane derivatives is significantly higher (72–86 kJ mol?1) than that in typical allylboranes (48–66 kJ mol?1). For the first member of the series, viz., 3-allyl-3-borabicyclo[3.3.1]nonane, the activation parameters of the permanent allylic rearrangement were also determined (ΔH = 82.7±3.4 kJ mol?1, ΔS = ?11.8±10.3 J mol?1 K?1, E A = 85.5±3.4 kJ mol?1, lnA = 29.2±1.2).  相似文献   

7.
An accurate gas-phase acidity for germane (enthalpy scale, equivalent to the proton affinity of GeH3 ?), ΔH acid o(GeH4) = 1502.0 ± 5.1 kJ mol?1, is obtained by constructing a consistent acidity ladder between GeH4, and H2S by using Fourier transform-ion cyclotron resonance spectrometry, and 0 and 298.15 K values for the first bond dissociation energy of GeH4 are proposed: D0 o(H3Ge-H) = 352 ± 9 kJ mol?1; D o(H3Ge-H) = 358 ± 9 kJ mol?1, respectively. These results are compared with experimental and theoretical data reported in the literature. Methylgermane was found to be a weaker acid than germane by approximately 35 kJ mol?1: ΔH acid o = 1536.6 kJ mol?1.  相似文献   

8.
At room temperature and below, the proton NMR spectrum of N-(trideuteriomethyl)-2-cyanoaziridine consists of two superimposed ABC patterns assignable to two N-invertomers; a single time-averaged ABC pattern is observed at 158.9°C. The static parameters extracted from the spectra in the temperature range from –40.3 to 23.2°C and from the high-temperature spectrum permit the calculation of the thermodynamic quantities ΔH0 = ?475±20 cal mol?1 (?1.987 ± 0.084 kJ mol?1) and ΔS0 = 0.43±0.08 cal mol?1 K?1 (1.80±0.33 J mol?1 K?1) for the cis ? trans equilibrium. Bandshape analysis of the spectra broadened by non-mutual three-spin exchange in the temperature range from 39.4–137.8°C yields the activation parameters ΔHtc = 17.52±0.18 kcal mol?1 (73.30±0.75 kJ mol?1), ΔStc = ?2.08±0.50 cal mol?1 K?1 (?8.70±2.09 J mol?1 K?1) and ΔGtc (300 K) = 18.14±0.03 kcal mol?1 (75.90±0.13 kJ mol?1) for the transcis isomerization. An attempt is made to rationalize the observed entropy data in terms of the principles of statistical thermodynamics.  相似文献   

9.
[RuCl2(NCCH3)2(cod)], an alternative starting material to [RuCl2(cod)] n for the preparation of ruthenium(II) complexes, has been prepared from the polymer compound and isolated in yields up to 87% using a new work-up procedure. The compound has been obtained as a yellow solid without water of crystallization. The complexes [RuCl2(NCR)2(cod)] spontaneously transform into dimers [Ru2Cl(μ-Cl)3(cod)2(NCR)] (R?=?Me, Ph). 1H NMR kinetic experiments for these transformations evidenced first-order behavior. [RuCl2(NCPh)2(cod)] dimerizes slower by a factor of ten than [RuCl2(NCCH3)2(cod)]. The following activation parameters, ΔH #?=?114?±?3?kJ?mol?1 and ΔS #?=?66?±?9?J?K?1?mol?1 for R?=?CH3CN (ΔG #?=?94?±?5?kJ?mol?1, 298.15?K) and ΔH #?=?122?±?2?kJ?mol?1 and ΔS #?=?75?±?6?J?K?1?mol?1 for R?=?Ph (ΔG #?=?100?±?4?kJ?mol?1, 298.15?K), have been calculated from the first-order rate constants in the temperature range 294–323?K. The kinetic parameters are in agreement with a two-step mechanism with dissociation of acetonitrile as the rate-determining step. The molecular structures of [Ru2Cl(μ-Cl)3(cod)2(NCR)] (R?=?Me, Ph) have been determined by X-ray diffraction.  相似文献   

10.
The addition of thioacetic acid to unsaturated alcohols or acids was utilized to obtain mercaptoalkanols which were condensed with suitable carybonyl compounds to prepare 24 methyl-substituted 1,3-oxathianes. The 1H NMR spectra of the 1,3-oxathiane products were recorded at 60, 100 and/or 300 MHz and fully analysed. The results are best explained by a chair form which is completely staggered in the C-4? C-5? C-6 moiety ψ45 or (ψ56=60±1°). 1,3-Oxathianes having syn-axial 2,4- (and/or 2,6-) methyl-methyl interactions exist appreciably, if not exclusively, in twist forms. The vicinal coupling constants lead to the conformational free energies of axial methyl groups at C-4, ΔG°=7.4±0.4 kJ mol?1, and at C-5, ΔG°=3.7±0.3 kJ mol?1, in good agreement with previous estimates. They also show that both r-4,cis-5,trans-6- and r-4,trans-5,trans-6- trimethyl-1,3-oxathianes greatly favour the chiar form where the methyl group at C-4 is axial. The chair-twist energy parameters are reestimated at ΔH°CT 27.0 kJ mol?1, ΔS°CT 11.6J mol?1K?1, and ΔG°CT(298) 23.5 kJ mol?1 for a 2,5-twist form.  相似文献   

11.
From measurements of the heats of iodination of CH3Mn(CO)5 and CH3Re(CO)5 at elevated temperatures using the ‘drop’ microcalorimeter method, values were determined for the standard enthalpies of formation at 25° of the crystalline compounds: ΔHof[CH3Mn(CO)5, c] = ?189.0 ± 2 kcal mol?1 (?790.8 ± 8 kJ mol?1), ΔHof[Ch3Re(CO)5,c] = ?198.0 ± kcal mol?1 (?828.4 ± 8 kJ mo?1). In conjunction with available enthalpies of sublimation, and with literature values for the dissociation energies of MnMn and ReRe bonds in Mn2(CO)10 and Re2(CO)10, values are derived for the dissociation energies: D(CH3Mn(CO)5) = 27.9 ± 2.3 or 30.9 ± 2.3 kcal mol?1 and D(CH3Re(CO)5) = 53.2 ± 2.5 kcal mol?1. In general, irrespective of the value accepted for D(MM) in M2(CO)10, the present results require that, D(CH3Mn) = 12D(MnMn) + 18.5 kcal mol?1 and D(CH3Re) = 12D(ReRe) + 30.8 kcal mol?1.  相似文献   

12.
Restricted rotation about the naphthalenylcarbonyl bonds in the title compounds resulted in mixtures of cis and trans rotamers, the equilibrium and the rotational barriers depending on the substituents. For 2,7-dimethyl-1,8-di-(p-toluoyl)-naphthalene (1) ΔH° = 3.66 ± 0.14 kJ mol?1, ΔS° = 1.67 ± 0.63 J mol?1 K?1, ΔHct = 55.5 ± 1.3 kJ mol?1, ΔHct = 51.9 ± 1.3 kJ mol?1, ΔSct = ?41.3±4.1 J mol?1 K?1 and ΔSct = ?42.9±4.1 J mol?1 K?1. The rotation about the phenylcarbonyl bond requires ΔH = ?56.9±4.4 kJ mol?1 and ΔS = ?20.5±15.3 J mol?1 K?1 for the cis rotamer, and ΔH = 43.5Δ0.4 kJ mol?1 and ΔS =± ?22.4Δ1.3 J mol?1 K?1 for the trans rotamer. The role of electronic factors is likely to be virtually the same for both these rotamers but steric interaction between the two phenyl rings occurs in the cis rotamer only. Hence, the difference of the activation enthalpies obtained for the cis and trans rotamers, ΔΔH?1 = 13.4 kJ mol?1, provides a basis for the estimation of the role of steric factors in this rotation. For the tetracarboxylic acid 2 and its tetramethyl ester 3 the equilibrium is even more shifted towards the trans form because of enhanced steric and electrostatic interactions between the substituents in the cis form. The barriers for the rotation around the phenylcarbonyl bond and the cis-trans isomerization are lowered; an explanation for this result is presented.  相似文献   

13.
Quantitative treatment of Sn segregation data in the three low‐index planes of Cu(111), Cu(110) and Cu(100) was carried out. Auger electron spectroscopy (AES) was used to acquire the data by heating the sample linearly with time (positive linear temperature ramp, PLTR) from 450 to 900 K and immediately cooling it linearly with time (negative linear temperature ramp, NLTR) from 900 to 650 K. The experimental data were fitted using the Darken model for the PLTR profiles. Two supportive models—Fick's integral and the Bragg–Williams equations—were used to extract the starting segregation parameters for the Darken model. Fick's integral was used to fit part of the data for the PLTR profile and the Bragg–Williams equations were used for the NLTR profile, which accounts for an extended equilibrium segregation region. The Sn segregation parameters, namely the interaction energy ΩCu? Sn, the diffusion coefficient D and the segregation energy ΔG, were found as: Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

14.
The kinetics of base hydrolysis of (αβ S)-(o -methoxy benzoato) (tetraethylenepentamine)cobalt(III) obeyed the rate law: kobs = kOH[OH?], in the range 0.05 ? [OH?]T, mol dm?3 ? 1.0, I = 1.0 mol dm?3, and 20.0–40.0°C. At 25°C, kOH = 13.4 ± 0.4 dm3 mol?1 s?1, ΔH = 93 ± 2 kJ mol?1 and ΔS = 90 ± 5 JK?1 mol?1. Several anions of varying charge and basicity, CH3CO2?, SO32?, SO42?, CO32?, C2O42?, CH2(CO2)22?, PO43?, and citrate3? had no effect on the rate while phthalate2?, NTA3?, EDTA4?, and DTPA5? accelerated the process via formation of the reactive ion pairs. The anionic (SDS), cationic (CTAB), and neutral (Triton X-100) micelles, however, retarded the reaction, the effect being in the order SDS> CTAB > Triton X-100. The importance of electrostatic and hydrophobic effects of the micelles on the selective partitioning of the reactants between the micellar and bulk aqueous pseudo-phases which control the rate are discussed. © 1994 John Wiley & Sons, Inc.  相似文献   

15.
The direct in situ NMR observation and quantification, based on the aldehyde –CH chemical shift region, of the inter‐conversion of secoiridoid derivatives due to temperature and solvent effects is demonstrated in complex extracts of natural products without prior isolation of the individual components. The equilibrium between the aldehyde hydrate form and the dialdehyde form of the oleuropein aglycon of an olive leaf aqueous extract in D2O was shown to be temperature dependent. The resulting thermodynamic values of the Van't Hoff plot with ΔHo = ?26.34 ± 1.00 kJ mol?1 and TΔS° (298 K) = ?24.70 ± 1.00 kJ mol?1 demonstrate a significant entropy term which nearly compensates the effect of enthalpy at room temperature. The equilibrium between the two diastereomeric hemiacetal forms and the dialdehyde form of the oleuropein 6‐O‐β‐d ‐glucopyranoside aglycon of an olive leaf aqueous extract in CD3OD was also shown to be strongly temperature dependent again because of the significant entropy term (TΔS° (298 K) = ?26.50 ± 1.39 kJ mol?1) compared with that of the enthalpy term (ΔHo = ?36.64 ± 1.46 kJ mol?1). This is the first demonstration of the significant role of the entropy parameter in determining the equilibrium of chemical transformations in complex mixtures of natural products due to solvent and temperature effects. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

16.
The enthalpies of reaction 1–3 have been determined
as ΔH(1) = ?176.6 ± 5.4, ΔH(2) = ?107.8 ± 6.0, and ΔH(3) = ?78.9 ± 2.0 kJ mol?1. The bond dissociation energy difference D1(PtCH3) ? D1(PtI) = +6 ± 5 kJ mol?1 is calculated, which indicates that the two bonds have very similar strengths.  相似文献   

17.
The gas‐phase elimination kinetics of the above‐mentioned compounds were determined in a static reaction system over the temperature range of 369–450.3°C and pressure range of 29–103.5 Torr. The reactions are homogeneous, unimolecular, and obey a first‐order rate law. The rate coefficients are given by the following Arrhenius expressions: ethyl 3‐(piperidin‐1‐yl) propionate, log k1(s?1) = (12.79 ± 0.16) ? (199.7 ± 2.0) kJ mol?1 (2.303 RT)?1; ethyl 1‐methylpiperidine‐3‐carboxylate, log k1(s?1) = (13.07 ± 0.12)–(212.8 ± 1.6) kJ mol?1 (2.303 RT)?1; ethyl piperidine‐3‐carboxylate, log k1(s?1) = (13.12 ± 0.13) ? (210.4 ± 1.7) kJ mol?1 (2.303 RT)?1; and 3‐piperidine carboxylic acid, log k1(s?1) = (14.24 ± 0.17) ? (234.4 ± 2.2) kJ mol?1 (2.303 RT)?1. The first step of decomposition of these esters is the formation of the corresponding carboxylic acids and ethylene through a concerted six‐membered cyclic transition state type of mechanism. The intermediate β‐amino acids decarboxylate as the α‐amino acids but in terms of a semipolar six‐membered cyclic transition state mechanism. © 2005 Wiley Periodicals, Inc. Int J Chem Kinet 38: 106–114, 2006  相似文献   

18.
Geometry, thermodynamic, and electric properties of the π‐EDA complex between hexamethylbenzene (HMB) and tetracyanoethylene (TCNE) are investigated at the MP2/6‐31G* and, partly, DFT‐D/6‐31G* levels. Solvent effects on the properties are evaluated using the PCM model. Fully optimized HMB–TCNE geometry in gas phase is a stacking complex with an interplanar distance 2.87 × 10?10 m and the corresponding BSSE corrected interaction energy is ?51.3 kJ mol?1. As expected, the interplanar distance is much shorter in comparison with HF and DFT results. However the crystal structures of both (HMB)2–TCNE and HMB–TCNE complexes have interplanar distances somewhat larger (3.18 and 3.28 × 10?10 m, respectively) than our MP2 gas phase value. Our estimate of the distance in CCl4 on the basis of PCM solvent effect study is also larger (3.06–3.16 × 10?10 m). The calculated enthalpy, entropy, Gibbs energy, and equilibrium constant of HMB–TCNE complex formation in gas phase are: ΔH0 = ?61.59 kJ mol?1, ΔS = ?143 J mol?1 K?1, ΔG0 = ?18.97 kJ mol?1, and K = 2,100 dm3 mol?1. Experimental data, however, measured in CCl4 are significantly lower: ΔH0 = ?34 kJ mol?1, ΔS = ?70.4 J mol?1 K?1, ΔG0 = ?13.01 kJ mol?1, and K = 190 dm3 mol?1. The differences are caused by solvation effects which stabilize more the isolated components than the complex. The total solvent destabilization of Gibbs energy of the complex relatively to that of components is equal to 5.9 kJ mol?1 which is very close to our PCM value 6.5 kJ mol?1. MP2/6‐31G* dipole moment and polarizabilities are in reasonable agreement with experiment (3.56 D versus 2.8 D for dipole moment). The difference here is due to solvent effect which enlarges interplanar distance and thus decreases dipole moment value. The MP2/6‐31G* study supplemented by DFT‐D parameterization for enthalpy calculation, and by the PCM approach to include solvent effect seems to be proper tools to elucidate the properties of π‐EDA complexes. © 2008 Wiley Periodicals, Inc. Int J Quantum Chem, 2008  相似文献   

19.
The enthalpies of the reactions 1 and 2 have been determined as ΔH = Pt(PPh3)2(CPhCPh)cryst. + HClg → Pt(PPh3)2(Cl)(CPhCHPh)cryst. (1) Pt(PPh3)2(CPhCPh)cryst. + 2HClgcis-Pt(PPh3)2Cl2cryst. + trans-CHPhCHPhg (2) ?90.2 ± 6 and ΔH = ?139.0 ± 16 kJ mol?1, respectively; dissociation energies of bonds involving platinum are expressed by the relationship: 41 kJ mol?1 + D(Pt-tolane) = 2D(PtCPhCHPh) = {D1(PtCl) + D2(PtCl)} ?350 kJ mol?1  相似文献   

20.
The determination of the dimerisation constant (KD) for the weak self-association of a compound C in dilute solution according to the equilibrium, 2C?C2 is described. The method uses chemical shifts measured on a series of solutions of C at different concentrations: the optimum KD is defined by a linear regression best-fit procedure, which simultaneously determines optimum values for δo and also for δ, the intrinsic chemical shifts for nuclei in the monomer and dimer species. The dimerisation of caffeine in D2O is used as a model to demonstrate the working of the method and the quality of results obtained. The most probable value of KD for caffeine at 30.5° is found in the range 5.5–6.0 kg solution · mol?1, and the enthalpy and entropy of dimerisation are found to be ΔH? = ?15.1 kJ · mol?1 and ΔS? = ?35.3 J · °C?1 · mol?1, respectively. The influence of small errors in δo on the confidence limits of KD is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号