首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
周昕  李宏建  谢素霞  付少丽  徐海清  吴金军 《中国物理 B》2010,19(12):127806-127806
Based on the finite difference time domain method,we investigated theoretically the optical properties and the plasmonic interactions between a gold film perforated with periodic sub-wavelength holes and a thin gold film.We showed that the plasmon resonant energies and intensities depend strongly on the thicknesses of the two films and the lattice constant.Based on the distributions of normal electric field component E z,tangential electric field component E y and total energy,we showed that the optical transmission is due to the collaboration of the localized waveguide resonance,the surface plasmon resonance and the coupling of the flat-surface plasmon of the two layers.  相似文献   

2.
A plasmonic multilayer structure (PMS) is proposed for photovoltaic cells with an ultrathin active layer that is 30 nm amorphous Si (α-Si). The optical properties of the PMS are analyzed by rigorous coupled-wave analysis (RCWA) and finite-difference time-domain (FDTD) method. Using the PMS, the incident light can be trapped into localized surface plasmon (LSP) and then the localized surface plasmon induces the surface plasmon (SP) that propagates transversely within the α-Si layer. Compared with the indium tin oxide (ITO)/α-Si/Ag structure, the photon number absorbed by PMS increase 28.7% while a normal incident transverse magnetic (TM) polarization wave is applied.  相似文献   

3.
Thanks to resonant characteristics of metallic nanoparticles, optical waves scattered from plasmonic nanoantennae can be well tailored in both amplitude and phase. We numerically demonstrate that, by varying the lengths and the lateral positions of gold nanorods in vicinity of a silicon waveguide, unidirectional emissions with typical forward-backward contrast ratio of 15 dB and directivity of 12 dB can be acquired in a plasmonic phased antenna array with sub-wavelength device length. The properties, i.e., the emission directionality and the size compactness, can be employed to control the far-field radiation pattern from a dielectric photonic circuit. Moreover, by altering the orientations of the dielectric waveguides decorated with plasmonic phased antenna arrays, we propose wireless light transportations in a layered photonic infrastructure, which may have applications in high-density photonic integrations.  相似文献   

4.
We report on the photoconductance in two‐dimensional arrays of gold nanorods. The arrays are formed by a combination of droplet deposition and stamping methods. We find that the plasmon induced photoconductance is sensitive to the linear polarization of the exciting photons consistent with the excitation of the longitudinal surface plasmon resonance of the nanorods.

  相似文献   


5.
刘永强  孔令宝  杜朝海  刘濮鲲 《物理学报》2015,64(17):174102-174102
等离子体激元(surface plasmon polaritons, SPP)因其独特的光学和物理特性, 使其具有诸如透射增强和局域共振等一系列新颖现象, 已成为当前国内外学者研究的热点. 本文对基于类表面等离子体激元(Spoof Surface Plasmons, SSP)的矩形金属光栅色散特性和模式分布进行了研究. 利用本征函数法并结合场匹配条件, 获得了矩形栅表面SSP的场表达式、色散关系和模式分布, 并通过电磁仿真进行了验证. 在此基础上分析了矩形栅各参数对SSP色散及模式分布的影响, 研究结果表明: 由本征函数法获得的SSP色散特性与仿真结果基本符合; 增大金属栅高度或减小排列周期能减小SSP的相速度; 而增大金属栅周期占空比能在一定程度上拓展SSP与电子束互作用的带宽; 改变金属盖板高度对慢波SSP色散模式基本没有影响; 减小金属栅侧面宽度能增大模式之间的间隔, 从而能有效避免模式竞争的发生. 本文对基于SSP的矩形金属光栅色散特性的研究将为进一步研究SSP与电子束的相互作用, 形成高效、宽带的新型太赫兹源奠定良好的理论基础.  相似文献   

6.
本文设计了一种内壁涂覆单层石墨烯的双椭圆形中空表面等离子波导,采用有限元的方法对其传输特性进行了研究。结果表明,椭圆之间的距离和半短轴的长度增大时,有效折射率的实部减小,传输距离增大,模式面积减小;圆化半径增大时,有效折射率的实部增大,传输距离减小,模式面积增大;工作频率增大时,有效折射率的实部减小,传输距离减小,模式面积减小;温度升高时,有效折射率先增大后减小,传输距离减小,模式面积减小。本文的工作为研究基于石墨烯的波导器件提供了理论依据。  相似文献   

7.
李娟  王冰艳  薛文瑞 《光学学报》2012,32(1):124002-261
采用二维时域有限差分(FDTD)法,分析并对比了弯曲分叉部分的形状分别为正弦形和圆弧形的基于金属-绝缘体-金属(MIM)型表面等离子体光波导的Y形分束器的反射率、传输率以及能量分束比随几何结构参数的变化关系。数值计算表明,波导宽度对这两种Y形分束器传输特性的影响较为明显,两个输出分支的偏移量和弯曲分叉部分的长度对这两种Y形分束器传输特性的影响比较微弱。在600~1500nm波长范围内,弯曲分叉部分为圆弧形的Y形分束器的传输特性比弯曲分叉部分为正弦形的好。对于非对称型Y形分束器,当弯曲分叉部分为正弦形时,偏移量对反射率、传输率和能量分束比的调节作用较为明显,能量分束比最大可达到2∶1。当弯曲分叉部分为圆弧形时,偏移量对反射率、传输率和能量分束比的调节作用较为微弱。  相似文献   

8.
The transmission spectrum of linearly polarized visible light through double metal thin films perforated with nano-hole arrays is investigated and simulated by using the three dimensional finite-difference time-domain method. The results show that the transmission spectra can be controlled by changing the longitudinal interval G between films and, their lateral displacements Lx and Ly, which are parallel and perpendicular to the polarization direction of the incident light, respectively. We have two important peaks (due to guided mode and SP mode) in these spectrums. The variation in longitudinal distance results a wavelength shift in guided mode peak of transmission spectrum while the wavelength of SP mode peak remains fixed. The lateral displacement Lx leads to the higher transmission of the guided mode peak, while the lateral displacement Ly suppresses the transmission of this peak. Here we try to discuss the physical explanations of these spectral behaviours by surface plasmon waves on the metal films and by using the concepts of surface plasma (SP) and guided modes in our double metal structure.  相似文献   

9.
朱剑凯  王向贤  祁云平  余建立 《中国物理 B》2022,31(1):14206-014206
We propose a simple one-dimensional grating coupling system that can excite multiple surface plasmon resonances for refractive index(RI)sensing with self-reference characteristics in the near-infrared band.Using theoretical analysis and the finite-difference time-domain method,the plasmonic mechanism of the structure is discussed in detail.The results show that the excited resonances are independent of each other and have different fields of action.The mode involving extensive interaction with the analyte environment achieves a high sensitivity of 1236 nm/RIU,and the figure of merit(FOM)can reach 145 RIU-1.Importantly,the mode that is insensitive to the analyte environment exhibits good self-reference characteristics.Moreover,we discuss the case of exchanging the substrate material with the analyte environment.Promising simulation results show that this RI sensor can be widely deployed in unstable and complicated environments.  相似文献   

10.
Optical fiber gratings have developed into a mature technology with a wide range of applications in various areas, including physical sensing for temperature, strain, acoustic waves and pressure. All of these applications rely on the perturbation of the period or refractive index of a grating inscribed in the fiber core as a transducing mechanism between a quantity to be measured and the optical spectral response of the fiber grating. This paper presents a relatively recent variant of the fiber grating concept, whereby a small tilt of the grating fringes causes coupling of the optical power from the core mode into a multitude of cladding modes, each with its own wavevector and mode field shape. The main consequence of doing so is that the differential response of the modes can then be used to multiply the sensing modalities available for a single fiber grating and also to increase the sensor resolution by taking advantage of the large amount of data available. In particular, the temperature cross‐sensitivity and power source fluctuation noise inherent in all fiber grating designs can be completely eliminated by referencing all the spectral measurements to the wavelength and power level of the core mode back‐reflection. The mode resonances have a quality factor of 105, and they can be observed in reflection or transmission. A thorough review of experimental and theoretical results will show that tilted fiber Bragg gratings can be used for high resolution refractometry, surface plasmon resonance applications, and multiparameter physical sensing (strain, vibration, curvature, and temperature).  相似文献   

11.
Plasmonic lithography is a very promising fabrication technology to obtain nanoscale structures beyond the diffraction limit. In this paper, a new plasmonic lithography is proposed to realize high efficiency fabrication of arbitrary patterns, which is based on cavity resonance through a thick metal mask. The mechanism of the cavity resonance transmission is explored. The one dimension (1D) and two dimension (2D) printings are simulated and discussed. The simulated results show the method that provides potential to pattern feature size with at least 40 nm, about λ/11.  相似文献   

12.
A study on the low-temperature CO gas sensors based on Au/SnO2 thick film was reported. Au/SnO2 powders were prepared by a deposition-precipitation method. Thick films were fabricated from Au/SnO2 powders. X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM) and X-ray photoelectron spectroscopy (XPS) analyses were carried out for investigation of morphology and crystalline structure. Au/SnO2 thick film sensors exhibited high sensitivity to CO gas at relatively low operating temperature (83-210 °C). We also reported the effect of the calcination temperature of Au/SnO2 on the CO gas sensing behavior. The optimal calcination temperature of Au/SnO2 was 300 °C.  相似文献   

13.
The metallic films perforated with a periodic array of air holes show extraordinary optical transmission properties. In this paper the influence of the incident light's polarization direction and the arrays’ period on the transmission through the rectangular hole arrays immersed in a metallic film is studied by utilizing the finite-difference time-domain method. The results show that the intensities and number of the transmission peaks can be adjusted by changing the incident light's polarization direction, while the intensities can keep constant for some particular frequencies. The transmission peak's wavelength can be easily controlled by altering the lattice period parallel to the electric field for the rectangular holes. These results maybe provide reference for the design of multiple-wavelength resonance devices.  相似文献   

14.
基于表面等离子体效应的光开关研究现状和进展   总被引:1,自引:0,他引:1  
陈聪  王沛  苑光辉  王小蕾  闵长俊  邓燕  鲁拥华  明海 《物理》2008,37(11):788-792
目前表面等离子体(surface plasmons, SPs)效应在光传感、光存储及生物光子学等领域的应用前景受到了广泛关注,通过计算模拟或实验基于SPs效应的光开关也层出不穷.文章较为系统地介绍了各种基于SPs效应的光开关原理和优缺点,对SPs全光开关做了重点介绍.  相似文献   

15.
The transmission property of metallic films with two-dimensional hole arrays is studied experimentally and numerically. For a triangular lattice subwavelength hole array in a 150 nm thick Ag film, both cavity resonance and planar surface modes are identified as the sources of enhanced optical transmissions. Semi-analytical models are developed for calculating the dispersion relation of the cavity resonant mode. They agree well with the experimental results and full-wave numerical calculations. Strong interaction between the cavity resonant mode and surface modes is also observed.  相似文献   

16.
马婧  刘冬冬  王继成  冯延 《物理学报》2018,67(9):94102-094102
在金属-电介质结构的基础上提出了一种基于金属狭缝阵列的各向异性偏振分束器,并采用有限元法研究了横磁(TM)和横电(TE)偏振光入射后结构所表现出的负反射和镜面反射等特性.计算结果表明,当偏振光的入射角设定在20?—70?时,入射的TM光发生强烈的负反射,而TE光的负反射很弱,并随着波长的增加而急剧下降.分析可得偏振分束光栅的理想负反射点和反射面的完美对称响应效果.通过仿真得到了理想负反射点的取值范围.结合严格耦合波法软件,计算不同偏振光入射时负反射和镜面反射条件下的反射率,其消光比高达10~6.  相似文献   

17.
Chemiresistive gas sensors utilizing graphene nanoplatelet (GNP)-polymer film coated electrodes have great promise for electronic nose applications. In this study GNP-polycaprolactone (PCL) based sensors fabricated using airbrush deposition are exposed to ethanol as an example target analyte to investigate ideal parameters for sensing performance maximization. The ratio of GNP to PCL was investigated from 3 to 21 wt% with sensing response maximized at 15 wt% and signal to noise ratio (SNR) maximized at 18 wt%. The effect of average coating thickness on the sensing performance was investigated by depositing 50–250 μL of 18 wt% GNP solution (852–2030 nm). The response was maximized at 150 μL (1370 nm) and the SNR was maximized at 200 μL (1680 nm). The results are consistent with previous studies of vapor sensors that employ carbon black-polymer films as sensing materials. The fabricated devices were robust and repeatable with respect to initial resistance, depth, roughness, sensor response, and SNR. Overall the results elucidate important parameters for fabrication and development of GNP-polymer gas sensors for detection and discrimination of target analytes with electronic nose systems.  相似文献   

18.
王玥  贺训军  吴昱明  吴群  梅金硕  李龙威  杨福杏  赵拓  李乐伟 《物理学报》2011,60(10):107301-107301
在获得太赫兹波段碳纳米管薄膜的介电特性基础上,利用数值THz时域光谱技术研究了碳纳米管薄膜栅周期结构的表面等离子激元的传播特性和局域化现象. 研究结果表明,在栅周期为168 μm时,频率在0.5-2.5 THz之间出现两个等离子模式的共振峰值,分别位于0.99 THz和1.95 THz,这与理论计算结果相符合. 数值计算的表面等离子激元传播距离与理论预测值相一致,达到了146 μm. 此外,分析了栅厚度与栅宽度变化对表面等离子波特性的影响. 关键词: 太赫兹 碳纳米管 表面等离子波  相似文献   

19.
为提高太赫兹近场显微成像技术的分辨率,设计了一款在Teflon探针的尖锥形表面镀上厚度渐变、具有相同占空比的超薄金属银制条带的探针,用于实现探针尖端处人工表面等离激元的激发和太赫兹波的亚波长聚焦.研究表明,对于频率为0.1 THz的入射波,厚度渐变镀银条带探针产生的紧聚焦光场的尺寸可稳定在20μm左右(λ/150),探针尖端处最大电场强度为入射电场强度的849倍.研究还发现,周期性金属条带的数目和入射电场的偏振方向可对探针尖端处产生的紧聚焦光斑的尺寸和电场强度等进行灵活有效的调控.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号