首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The mechanism of cobalt(II) porphyrin-mediated aziridination of styrene with PhSO(2)N(3) was studied by means of DFT calculations. The computations clearly indicate the involvement of a cobalt 'nitrene radical' intermediate in the Co(II)(por)-catalyzed alkene aziridination. The addition of styrene to this species proceeds in a stepwise fashion via radical addition of the 'nitrene radical'C to the C=C double bond of styrene to form a γ-alkyl radical intermediate D. The thus formed tri-radical species D easily collapses in an almost barrierless ring closure reaction (TS3) to form the aziridine, thereby regenerating the cobalt(II) porphyrin catalyst. The radical addition of the 'nitrene radical'C to the olefin (TS2) proceeds with a comparable barrier as its formation (TS1), thus providing a good explanation for the first order kinetics in both substrates and the catalyst observed experimentally. Formation of C is clearly accelerated by stabilization of C and TS1 via hydrogen bonding between the S=O and N-H units. The computed radical-type mechanism agrees well with all available mechanistic and kinetic information. The computed free energy profile readily explains the superior performance of the Co(II)(porAmide) system with H-bond donor functionalities over the non-functionalized Co(TPP).  相似文献   

2.
During the aziridination of styrene using copper bis(oxazoline) complexes the ee increases with conversion due to further reactions of the product.  相似文献   

3.
Cundari TR  Dinescu A  Kazi AB 《Inorganic chemistry》2008,47(21):10067-10072
Copper nitrenes are of interest as intermediates in the catalytic aziridination of olefins and the amination of C-H bonds. However, despite advances in the isolation and study of late-transition-metal multiply bonded complexes, a bona fide structurally characterized example of a terminal copper nitrene has, to our knowledge, not been reported. In anticipation of such a report, terminal copper nitrenes are studied from a computational perspective. The nitrene complexes studied here are of the form (beta-diketiminate)Cu(NPh). Density functional theory (DFT), complete active space self-consistent-field (CASSCF) electronic structure techniques, and hybrid quantum mechanical/molecular mechanical (QM/MM) methods are employed to study such species. While DFT methods indicate that a triplet (S = 1) is the ground state, CASSCF calculations indicate that a singlet (S = 0) is the ground state, with only a small energy gap between the singlet and triplet. Moreover, the ground-state (open-shell) singlet copper nitrene is found to be highly multiconfigurational (i.e., biradical) and to possess a bent geometry about the nitrene nitrogen, contrasting with the linear nitrene geometry of the triplet copper nitrenes. CASSCF calculations also reveal the existence of a closed-shell singlet state with some degree of multiple bonding character for the copper-nitrene bond.  相似文献   

4.
采用密度泛函理论(DFT)对苯乙烯在Ag(110)表面和Ag(111)表面的环氧化反应进行了计算研究. 经计算, 在Ag(110)表面预吸附氧原子更易吸附在3 重穴位(3h), 吸附能为-3.59 eV; 在Ag(111)表面预吸附氧原子的最稳定吸附位是fcc 位, 吸附能为-3.69 eV. 苯乙烯的环氧化反应过程首先经过一个金属中间体, 然后再进一步反应变为产物, 其中经过直链中间体较支链中间体更加有利. Ag(110)面的反应活化能一般大于Ag(111)面的, 并且微观动力学模拟结果表明, Ag(111)表面生成环氧苯乙烷的选择性要明显高于Ag(110)表面(0.38 与 0.003), 原因是Ag(111)面环氧化反应活化能小于苯乙醛及燃烧中间体的活化能, 而在Ag(110)上正相反.  相似文献   

5.
Heteroscorpionate ligands of the bis(pyrazolyl)methane family have been applied in the stabilisation of terminal copper tosyl nitrenes. These species are highly active intermediates in the copper‐catalysed direct C?H amination and nitrene transfer. Novel perfluoroalkyl‐pyrazolyl‐ and pyridinyl‐containing ligands were synthesized to coordinate to a reactive copper nitrene centre. Four distinct copper tosyl nitrenes were prepared at low temperatures by the reaction with SO2tBuPhINTs and copper(I) acetonitrile complexes. Their stoichiometric reactivity has been elucidated regarding the imination of phosphines and the aziridination of styrenes. The formation and thermal decay of the copper nitrenes were investigated by UV/Vis spectroscopy of the highly coloured species. Additionally, the compounds were studied by cryo‐UHR‐ESI mass spectrometry and DFT calculations. In addition, a mild catalytic procedure has been developed where the copper nitrene precursors enable the C?H amination of cyclohexane and toluene and the aziridination of styrenes.  相似文献   

6.
The reactions of nitrosobenzene and N,N'-diethyl-4-nitrosoaniline with [Cu(CH3CN)4]PF6 provide novel Cu(I) complexes, [Cu(PhNO)3]PF6 (1) and [Cu(Et2NPhNO)3]PF6 (2); in 2 the copper atom is N-coordinated to the nitrosoarenes in a distorted trigonal planar geometry. Complex 1 is strongly implicated as a reactive intermediate in the Cu(I)-catalyzed allylic amination of olefins based on (i) its isolation from the catalytic reaction, (ii) its stoichiometric regioselective allylic amination of alpha-methyl styrene (AMS), (iii) the non-involvement of free PhNO in its amination of AMS, and (iv) its function as a catalyst for the amination of alkenes from phenylhydroxylamine. The reaction between AMS and 1 (80 degrees C, dioxane) is first order in both alkene and 1. Relative rate studies of the reaction of 1 with para substituted AMS derivatives gives a Hammett rho value of -0.035. Alkene adducts isolated from the reaction of 1 with styrene and alpha-methylstyrene are formulated as [(PhNO)3Cu(eta(2)-alkene)]PF6 (7,8) on the basis of spectroscopic characterization and thermolysis. PM3 and DFT MO calculations support the role of [(alkene)Cu(RNO)3]+ and (eta(1)- or eta(3)-allyl)Cu(RNO)2(RNHOH)+ complexes as probable catalytic intermediates and address the origin of the distinctive reaction regioselectivity. A mechanistic scheme is proposed which is consistent with the accumulated experimental and computational results.  相似文献   

7.
The (salen)Mn(III)-catalyzed epoxidation reaction mechanism has been investigated using density functional theory (DFT). There is considerable interest in and controversy over the mechanism of this reaction. The results of experimental studies have offered some support for three different reaction mechanisms: concerted, stepwise radical, and metallooxetane mediated. In this paper, a theoretical examination of the reaction suggests a novel mechanism that describes the reaction as a multichannel process combining both concerted and stepwise radical pathways. The competing channels have different spin states: the singlet, the triplet, and the quintet. The singlet reaction pathway corresponds to a concerted mechanism and leads exclusively to a cis epoxide product. In contrast, the triplet and quintet reactions follow a stepwise mechanism and lead to a product mixture of cis and trans epoxides. We show that the experimentally observed dependence of isomer product ratios on electronic effects connected with the substitution of the catalyst ligands is due to changing the relative position and, hence, the relative activities of the channels with different cis-trans yields. Because the results and conclusions of the present work dramatically differ from the results and conclusion of the recent DFT theoretical investigation (Linde, C.; Akermark, B; Norrby, P.-O.; Svensson, M. J. Am. Chem. Soc. 1999, 121, 5083.), we studied possible sources for the deep contradictions between the two works. The choice of the DFT functional and a model has been shown to be crucial for accurate results. Using high level ab initio calculations (coupled cluster-CCSD(T)), we show that the computational procedure employed in this study generates significantly more reliable numerical results. It is also shown that the smaller cationic model without a chlorine ligand that was used by Linde et al. is too oversimplified with respect to our larger neutral model. For this reason, using the cationic model led to a qualitatively wrong quintet reaction profile that played a key role in theoretical postulates in the earlier work.  相似文献   

8.
The interactions of oxygen atoms and Au(100) can affect the surface morphology by inducing the hexagonal type reconstruction to the surface layer and forming a lifted O-Au-O species.  相似文献   

9.
Vo LK  Singleton DA 《Organic letters》2004,6(14):2469-2472
[reaction: see text] The hydroamination of styrene with aniline catalyzed by phosphine-ligated palladium triflates exhibits a substantial (13)C isotope effect at the benzylic carbon. This supports rate-determining nucleophilic attack of amine on a eta(3)-phenethyl palladium complex. Deuterium exchange observations and predicted isotope effects based on DFT calculations support this mechanism. Selectivity in these reactions is determined by the facility of palladium displacement after reversible hydropalladation of the alkene.  相似文献   

10.
The adsorption of 4-mercaptopyridine on Au(111) from aqueous or ethanolic solutions is studied by different surface characterization techniques and density functional theory calculations (DFT) including van der Waals interactions. X-ray photoelectron spectroscopy and electrochemical data indicate that self-assembly from 4-mercaptopyridine-containing aqueous 0.1 M NaOH solutions for short immersion times (few minutes) results in a 4-mercaptopyridine (PyS) self-assembled monolayer (SAM) with surface coverage 0.2. Scanning tunneling microscopy images show an island-covered Au surface. The increase in the immersion time from minutes to hours results in a complete SAM degradation yielding adsorbed sulfur and a heavily pitted Au surface. Adsorbed sulfur is also the main product when the self-assembly process is made in ethanolic solutions irrespective of the immersion time. We demonstrate for the first time that a surface reaction is involved in PyS SAM decomposition in ethanol, a surface process not favored in water. DFT calculations suggest that the surface reaction takes place via disulfide formation driven by the higher stability of the S-Au(111) system. Other reactions that contribute to sulfidization are also detected and discussed.  相似文献   

11.
Experimental and DFT-based computational results on the aziridination mechanism and the catalytic activity of (bispidine)copper(I) and -copper(II) complexes are reported and discussed (bispidine=tetra- or pentadentate 3,7-diazabicyclo[3.1.1]nonane derivative with two or three aromatic N donors in addition to the two tertiary amines). There is a correlation between the redox potential of the copper(II/I) couple and the activity of the catalyst. The most active catalyst studied, which has the most positive redox potential among all (bispidine)copper(II) complexes, performs 180 turnovers in 30 min. A detailed hybrid density functional theory (DFT) study provides insight into the structure, spin state, and stability of reactive intermediates and transition states, the oxidation state of the copper center, and the denticity of the nitrene source. Among the possible pathways for the formation of the aziridine product, the stepwise formation of the two N-C bonds is shown to be preferred, which also follows from experimental results. Although the triplet state of the catalytically active copper nitrene is lowest in energy, the two possible spin states of the radical intermediate are practically degenerate, and there is a spin crossover at this stage because the triplet energy barrier to the singlet product is exceedingly high.  相似文献   

12.
Recent experimental work has shown that the addition of styrene molecules to hydrogen-terminated Si(001) surfaces leads to the formation of one-dimensional molecular structures through a radical-initiated surface chain reaction mechanism. These nanometric structures are observed to be directed parallel to the dimer rows on the H-Si(001)-(2 x 1) surface and perpendicular to the same rows on H-Si(001)-(3 x 1). Using periodic density functional theory (DFT) calculations, we have studied the initial steps of the radical chain mechanism on the H-Si(001)-(3 x 1) surface and compared them to analogous results for H-Si(001)-(2 x 1). On the H-Si(001)-(3 x 1) surface, one of the crucial steps of the surface chain reaction, namely, the abstraction of a H atom from a nearby surface hydride unit, is found to have a somewhat smaller activation energy in the direction perpendicular to the dimer rows (H abstraction from the nearest dihydride site) than along the rows (H abstraction from a neighboring dimer). Additionally, due to the steric repulsion between the styrene molecules and the SiH2 subunits, growth along the dimer rows is not thermodynamically favorable on the (3 x 1) surface. On the other hand, due to the absence of the SiH2 subunits, growth parallel to the Si dimer rows becomes favored on the H-Si(001)-(2 x 1) surface.  相似文献   

13.
The addition reactions of alkenes and alkynes to the H-terminated GaN (0001) surface with a Ga dangling-bond have been studied employing periodic density functional theory (PDFT) calculations. Detailed information on the reaction pathways of these alkenes and alkynes with H-GaN (0001) surface is provided, which indicates that the reactions contain two steps separated by the metastable intermediates: elementary addition reaction and H-abstraction process. From the energy curves, the reactions are clearly viable in the cases of ethene, styrene and phenylacetylene; while for ethyne, the H-abstraction barrier is higher than the desorption barrier of the intermediate, so the adsorbed C2H2 in intermediate is more likely to be desorbed back into the gas phase than to form a stable adsorbed species. Furthermore, it is obvious that for either alkenes or alkynes, the systems substituted by phenyl have more stable intermediates because π conjugation could improve their stabilities.  相似文献   

14.
Density functional theory (DFT ) was used to study reactions involving small molecules. Relative energies of isomers and transition structures of diazene, formaldehyde, and methylenimine were determined using various DFT functionals and results were compared with MP 2 and MP 4 calculations. DFT reaction barriers were found to be consistently lower. For some reactions, such as OH + H2→ H2O + H, gradient-corrected functionals predict very low or nonexistent barriers. The hybrid Hartree–Fock–DFT adiabatic connection method (ACM ) often provides much better results in such cases. The performance of several density functionals, including ACM , was tested in calculations on over 100 atomization, hydrogenation, bond dissociation, and isodesmic reactions. The ACM functional provides consistently better geometries and reaction energetics than does any other functional studied. In cases where both HF and gradient-corrected DFT methods underestimate bond distances, the ACM geometries may be inferior to those predicted by gradient-corrected DFT methods. © 1995 John Wiley & Sons, Inc.  相似文献   

15.
Regio- and stereoselective palladium-pincer complex catalyzed allylation of sulfonylimines has been performed by using substituted trifluoro(allyl)borates and trimethylallylstannanes. The reactions provide the corresponding branched allylic products with excellent regioselectivity. The stereoselectivity of these processes is very high when trifluoro(cinnamyl)borate and trimethyl cinnamyl stannane are employed as allylic precursors; however, the reaction with trifluoro(crotyl)borate results in poor stereoselectivity. The major diastereomer formed in these reactions was the syn isomer, while the (previously reported) reactions with aldehyde electrophiles afforded the anti products, indicating that the mechanism of the stereoselection is dependent on the applied electrophile. Therefore, we have studied the mechanistic aspects of the allylation reactions by experimental studies and DFT modeling. The experimental mechanistic studies have clearly shown that potassium trifluoro(allyl)borate undergoes transmetallation with palladium-pincer complex 1 a affording an eta(1)-allylpalladium-pincer complex (1 e). The mechanism of the transfer of the allyl moiety from palladium to the sulfonylimine substrate was studied by DFT calculations at the B3PW91/LANL2DZ+P level of theory. These calculations have shown that the electrophilic substitution of sulfonylimines proceeds in a one-step process with a relatively low activation energy. The topology of the potential energy surface in the vicinity of the transition-state structure proved to be rather complicated as nine different geometries with similar energies were located as first order saddle points. Our studies have also shown that the high stereoselectivity with cinnamyl metal reagents stems from steric interactions in the TS structure of the allylation reaction. In addition, these studies have revealed that the mechanism of the stereoselection in the allylation of aldehydes and sulfonylimines is fundamentally different.  相似文献   

16.
Hydrogen abstraction reactions by methyl radicals on the zigzag and armchair edges of perylene are studied by density functional theory (DFT) to explore various growth pathways that seem to be in line with experimental observations. The DFT approach is validated by comparing the results obtained from calculations with six different functionals with those obtained from correlated ab initio methods, thereby emphasizing the calculation of reaction barriers. A useful compromise between accuracy and computational cost is provided by DFT, and possible pathways are studied in detail at this level of calculation. Our computational study is carried out by ordering, as a first step, all of the isomers that arise from the abstraction of one or two H atoms from 1,12-dimethyl-1,12-dihydroperylene and 3,4-dimethyl-3,4-dihydroperylene with respect to their energies. Subsequently, only those pathways that connect low-energy isomers are investigated. The calculations reveal that the selected pathways are favored thermodynamically, and also that the reaction barriers are somewhat higher than the energy locally available for the respective reaction. Notably, in the case of 3,4-dimethyl-3,4-dihydroperylene, the first two reaction steps have no or only a very low reaction barrier. The final conclusion of our study is that a cascade of reactions is possible that leads to the growth of a graphene sheet on a graphite surface.  相似文献   

17.
Proceeding from a ligand constituted by two units of kojic acid linked by a methylene group, which proved a very promising chelator for excess iron(III) and aluminium(III) pathologies, two new ligands have been designed and synthesized: one by adding a vanillin molecule in the linker and the second by adding an o-vanillin molecule. Both these ligands, on the basis of complex formation studies presented here, show significant potential as therapeutic agents for iron and aluminium overload. Protonation constants of the pure ligands have been determined by potentiometry, and standard reaction heats by calorimetry. Hydrogen bonding plays an important role in the protonation reactions. The crystal structures of both ligands have furthermore been resolved. Complex formation equilibria for the iron complexes have been studied by combined potentiometry-spectrophotometry and those of aluminium by potentiometry alone. All complexes were found to contain two metal ions. NMR diffusion measurements hardly applied to complex formation equilibria and the results of density functional theory (DFT) calculations were powerful tools in confirming the proposed reaction model and in evaluating the relative stabilities of the products. Further support was given by NMR chemical shift measurements and electrospray mass spectrometry.  相似文献   

18.
采用密度泛函理论(DFT)方法研究了在还原剂(EtO)3SiH存在下, 铜(I) (Cl2IPrCuF)催化CO2插入1-苯基丙炔生成α,β不饱和羧酸的反应机理. 计算结果表明, Cl2IPrCuF 首先与(EtO)3SiH 生成活性催化剂Cl2IPrCuH,然后经历三个步骤完成催化反应: (1) Cl2IPrCuH 与1-苯基丙炔加成生成烯基铜中间体. 由于炔烃的不对称性,烯基铜中间体有两种同分异构体, 最后可导致生成两种对应的α,β不饱和羧酸衍生物; (2) CO2插入烯基铜中间体得到羧基铜中间体; (3) (EtO)3SiH 与羧基铜中间体发生σ转位反应形成最终产物, 同时重新生成催化剂Cl2IPrCuH. 理论研究还表明, 生成两种α,β不饱和羧酸衍生物的反应路径所对应的决速步骤不同, 在Path a 中炔烃插入反应和CO2插入反应都可能是整个催化反应的决速步骤, 自由能垒分别为68.6 和67.8 kJ·mol-1, 而在Path b中, 仅炔烃插入反应是整个催化反应的决速步骤, 自由能垒为78.7 kJ·mol-1. 此结果很好地给出了实验上两种α,β不饱和羧酸衍生物收率不同的原因. 炔烃与Cl2IPrCuH的加成决定了反应的区域选择性, 其中电子效应是影响反应区域选择性的主要原因.  相似文献   

19.
In this paper, we report the investigation of the reaction of adsorbed NH and N with styrene on Ag(110) using temperature-programmed reaction spectroscopy. Using O2 and NH3 as the starting reagents, NH and N species were deposited on a Ag surface. The reaction of styrene on NH- and N-covered Ag surface appears to yield 2-phenylaziridine and benzonitrile, with additional products HCN and NH3. The formation of aziridine, the nitrogenous analogue of styrene epoxide, is proposed to be due to the cycloaddition of adsorbed NH to the carbon-carbon double bond. These results suggest that Ag-based heterogeneous catalysts may be useful for the aziridination of olefins.  相似文献   

20.
The dissociations of two types of copper(II)-containing complexes of tryptophan (Trp), tyrosine (Tyr), or phenylalanine (Phe) are described. The first type is the bis-amino acid complex, [Cu(II)(M)(2)].(2+), where M = Trp, Tyr, or Phe; the second [Cu(II)(4Cl-tpy)(M)].(2+), where 4Cl-tpy is the tridendate ligand 4'-chloro-2,2':6',2'-terpyridine. Dissociations of the Cu(ii) bis-amino acid complexes produce abundant radical cation of the amino acid, M.(+), and/or its secondary products. By contrast, dissociations of the 4Cl-tpy-bearing ternary complexes give abundant M.(+) only for Trp. Density functional theory (DFT) calculations show that for Tyr and Phe, amino-acid displacement reactions by H(2)O and CH(3)OH (giving [Cu(II)(4Cl-tpy)(H(2)O)].(2+) and [Cu(II)(4Cl-tpy)(CH(3)OH)].(2+)) are energetically more favorable than dissociative electron transfer (giving M.(+) and [Cu(I)(4Cl-tpy)](+)). The fragmentation pathway common to all these [Cu(II)(4Cl-tpy)(M)].(2+) ions is the loss of NH(3). DFT calculations show that the loss of NH(3) proceeds via a "phenonium-type" intermediate. Dissociative electron transfer in [Cu(II)(4Cl-tpy)(M-NH(3))].(2+) results in [M-NH(3)].(+). The [Phe-NH(3)] (+) ion dissociates facilely by eliminating CO(2) and giving a metastable phenonium-type ion that rearranges readily into the styrene radical cation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号