首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two furan‐flanked polymers poly{3,6‐difuran‐2‐yl‐2,5‐di(2‐octyldodecyl)‐pyrrolo[3,4‐c]pyrrole‐1,4‐dione‐alt‐thienylenevinylene} (PDVFs), with a highly π‐extended diketopyrrolopyrrole backbone, are developed for solution‐processed high‐performance polymer field‐effect transistors (FETs). Atomic force microscopy and grazing incidence X‐ray scattering analyses indicate that PDVF‐8 and PDVF‐10 films exhibit a similar nodular morphology with the ultrasmall lamellar distances of 16.84 and 18.98 Å, respectively. When compared with the reported polymers with the same alkyl substitutes, this is the smallest d‐spacing value observed to date. This closed lamellar crystallinity facilitates charge carrier transport. Therefore, polymer thin‐film transistors fabricated from as‐spun PDVF‐8 films exhibit a high hole mobility exceeding 1.0 cm2 V?1 s?1 with a current on/off ratio above 106. After annealing treatment at 100 °C in air, the highest hole mobility of PDVF‐8‐based FETs was significantly improved to 1.90 cm2 V?1 s?1, which is among the highest values of the reported FET devices fabricated from polymer thin films based on this mild annealing temperature. In contrast, long alkyl‐substituted PDVF‐10 exhibited a relatively low hole mobility of 1.65 cm2 V?1 s?1 mainly resulting from low molecular weight. This work demonstrated that PDVFs would be promising semiconductors for developing cost‐effective and large‐scale production of flexible organic electronics. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 1970–1977  相似文献   

2.
A series of fluorene–thiophene‐based semiconducting materials, poly(9,9′‐dioctylfluorene‐alt‐α,α′‐bisthieno[3,2‐b]thiophene) (F8TT2), poly(9,9′‐di(3,6‐dioxaheptyl)fluorene‐alt‐thieno[3,2‐b]thiophene) (BDOHF8TT), poly(9,9′‐di(3,6‐dioxaheptyl)fluorene‐alt‐bithiophene) (BDOHF8T2), and poly(9,9′‐dioctylfluorene‐co‐bithiophene‐co‐[4‐(2‐ethylhexyloxyl)phenyl]diphenylamine) (F8T2TPA), was synthesized through a palladium‐catalyzed Suzuki coupling reaction. F8TT2, BDOHF8TT, BDOHF8T2, and F8T2TPA films exhibited photoluminescence maxima at 523, 550, 522, and 559 nm, respectively. Solution‐processed field‐effect transistors (FETs) fabricated with all the copolymers except F8T2TPA showed p‐type organic FET characteristics. Studies of the differential scanning calorimetry scans and FETs of the polymers revealed that more crystalline polymers gave better FET device performance. The greater planarity and rigidity of thieno[3,2‐b]thiophene in comparison with bithiophene resulted in higher crystallinity of the polymer backbone, which led to improved FET performance. On the other hand, the random incorporation of the triphenylamine moiety into F8T2TPA caused the polymer chains to lose crystallinity, resulting in an absence of FET characteristics. With this study, we could assess the liquid‐crystallinity dependence of the field‐effect carrier mobility on organic FETs based on liquid‐crystalline copolymers. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 4709–4721, 2006  相似文献   

3.
Two conjugated polymers (CPs) P‐tCzC12 and P‐tCzC16 comprising alternating dithieno[3,2‐b:6,7‐b]carbazole and 4,4′‐dihexadecyl‐2,2′‐bithiophene units have been designed and synthesized. Upon thermal annealing, they can form ordered thin films in which the polymer backbones dominantly adopted an edge‐on orientation respective to the substrate with a lamellar spacing of ≈24 Å and a π‐stacking distance of ≈3.7 Å. Organic thin‐film transistors (OTFTs) were fabricated by solution casting. A hole mobility of 0.39 cm2 V−1s−1 has been demonstrated with P‐tCzC16. This value is the highest among the CPs containing heteroacenes larger than 4 rings.  相似文献   

4.
A series of 6H‐phenanthro[1,10,9,8‐cdefg]carbazole (PC) and benzothiadiazole (BT) based donor–acceptor (D‐A) random copolymers PPC‐T‐BT_3/1, PPC‐T‐BT_2/1, PPC‐T‐BT_1/1, PPC‐T‐BT_1/2, and PPC‐T‐BT_1/3 were easily prepared by varying the molar ratio of PC to BT from 3:1, 2:1, 1:1, 1:2, to 1:3, respectively. The corresponding alternating D‐A copolymer poly{6H‐phenanthro[1,10,9,8‐cdefg]carbazole‐alt‐5,5‐(4′,7′‐di‐2‐thienyl‐2′,1′,3′‐benzothiadiazole} (PPCDTBT) was also synthesized for comparison. Compared with PPCDTBT, PPC‐T‐BT_1/1, PPC‐T‐BT_1/2, and PPC‐T‐BT_1/3 obtained more pronounced intramolecular charge transfer band and extended absorption. Power conversion efficiency of these copolymer‐based devices strongly depends on the D/A molar ratio, related to the spectrum absorption and active layer morphology. Among the polymer solar cells based on random copolymers, PPC‐T‐BT_2/1:PC61BM based device achieved the best efficiency of 1.9%, which is close to the efficiency of PPCDTBT:PC61BM based device (2.3%). Therefore, it is concluded that the random copolymer can achieve the comparable performance to alternating copolymer by precisely adjusting the D/A molar ratio on small scales. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 4885–4893  相似文献   

5.
7H‐Dibenzo[a,g]carbazole‐substituted polysiloxane (PSX‐[a,g]BCz) has been synthesized by hexachloroplatinate (IV) hydrate polymerization from poly(methylhydrosiloxane) and 7‐ally‐7H‐dibenzo[a,g]carbazole. PSX‐[a,g]BCz composite showed large orientational birefringences because of both large dipole moments and high‐polarizability anisotropies of P‐IP‐DC chromophore associated with the effective conjugation along the polyene. The 50‐μm thick photorefractive material containing 30 wt % 2‐[3‐[(E)‐2(piperidino)‐1‐ethenyl]‐5,5‐dimethyl]‐2‐cyclohexenyliden]malononitrile showed a diffraction efficiency of 51% at 55 V/μm, which corresponded to a Δn of 3.45 × 10?3. PSX‐[a,g]BCz composite shows a fast time constant of 0.42 s at 34 °C and 55 V/μm, which corresponded to the space‐charge field of 12 V/μm under 70 V/μm. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 1783–1791, 2008  相似文献   

6.
We have measured the time evolution of the self‐assembly process in perpendicular‐oriented cylindrical‐phase diblock copolymer thin films using statistical analysis of high‐resolution scanning electron microscope (SEM) images. Within minutes of annealing above the polymer glass‐transition temperature, microphase separation between polymer blocks results in formation of uniform nanometer‐scale domains whose relative position is initially largely uncorrelated. On further annealing, the cylindrical polymer domains organize into a two‐dimensional hexagonal lattice whose characteristic grain size increases slowly with time (~t1/4). © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 1970–1975, 2004  相似文献   

7.
A series of novel styrene derived monomers with triphenylamine‐based units, and their polymers have been synthesized and compared with the well‐known structure of polymer of N,N′‐bis(3‐methylphenyl)‐N,N′‐diphenylbenzidine with respect to their hole‐transporting behavior in phosphorescent polymer light‐emitting diodes (PLEDs). A vinyltriphenylamine structure was selected as a basic unit, functionalized at the para positions with the following side groups: diphenylamine, 3‐methylphenyl‐aniline, 1‐ and 2‐naphthylamine, carbazole, and phenothiazine. The polymers are used in PLEDs as host polymers for blend systems with the following device configuration: glass/indium–tin–oxide/PEDOT:PSS/polymer‐blend/CsF/Ca/Ag. In addition to the hole‐transporting host polymer, the polymer blend includes a phosphorescent dopant [Ir(Me‐ppy)3] and an electron‐transporting molecule (2‐(4‐biphenyl)‐5‐(4‐tert‐butylphenyl)‐1,3,4‐oxadiazole). We demonstrate that two polymers are excellent hole‐transporting matrix materials for these blend systems because of their good overall electroluminescent performances and their comparatively high glass transition temperatures. For the carbazole‐substituted polymer (Tg = 246 °C), a luminous efficiency of 35 cd A?1 and a brightness of 6700 cd m?2 at 10 V is accessible. The phenothiazine‐functionalized polymer (Tg = 220 °C) shows nearly the same outstanding PLED behavior. Hence, both these polymers outperform the well‐known polymer of N,N′‐bis(3‐methylphenyl)‐N,N′‐diphenylbenzidine, showing only a luminous efficiency of 7.9 cd A?1 and a brightness of 2500 cd m?2 (10 V). © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 3417–3430, 2010  相似文献   

8.
Low bandgap polymers with dithienylquinoxaline moieties based on 6H‐phenanthro[1,10,9,8‐cdefg]carbazole were synthesized via the Suzuki coupling reaction. Alkoxy groups were substituted at two different positions on the phenyl groups of the quinoxaline units of these polymers: in the para‐position (PPQP) and in the meta‐position (PPQM). The two polymers showed similar physical properties: broad absorption in the range of 400–700 nm, optical bandgaps of ~1.8 eV, and the appropriate frontier orbital energy levels for efficient charge transfer/separation at polymer/PC71BM interfaces. However, the PPQM solar cell achieved a higher PCE due to its higher Jsc. Our investigation of the morphologies of the polymer:PC71BM blend films and theoretical calculations of the molecular conformations of the polymer chains showed that the polymer with the meta‐positioned alkoxy group has better miscibility with PC71BM than the polymer with the para‐positioned alkoxy group because the dihedral angle of its phenyl group with respect to the quinoxaline unit is higher. This higher miscibility resulted in a polymer:PC71BM blend film with a better morphology and thus in a higher PCE. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 796–803  相似文献   

9.
We designed a 3,6‐dibromo‐9‐hexyl‐9H‐carbazole derivative with the blue emissive iridium complex bis[2‐(4,6‐difluorophenyl)pyridyl‐N,C2′](picolinato)iridium(III) (FIrpic) linked at the alkyl terminal. Based on this monomer, novel 3,6‐carbazole‐alt‐tetraphenylsilane copolymers grafted with FIrpic were synthesized by palladium‐catalyzed Suzuki coupling reaction, and the content of FIrpic in the polymers could be controlled by feed ratio of the monomers. The polymer films mainly show blue emission from FIrpic, and the emission intensity from the polymer backbones is much weaker compared with the doped analogues, which demonstrates an efficient energy transfer from polymeric host to covalently bonded guest. The phase separation in the polymers was suppressed, which can be identified by atomic force microscopy and designed electroluminescent (EL) devices. EL devices based on the polymers exhibited blue phosphorescence from FIrpic. The luminous efficiency of preliminary devices reached 2.3 cd/A, and the efficiency roll‐off at high current densities was suppressed. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 1859–1865, 2010  相似文献   

10.
A series of modified thiophene groups containing PPV‐based semiconducting materials, poly[(2,5‐bis(octyloxy)‐1,4‐phenylenevinylene)‐alt‐(2,2′bithienylenevinylene)] ( PPBT ), poly[(2,5‐bis(octyloxy)‐1,4‐phenylenevinylene)‐alt‐(5,5‐thiostilylenevinylene)] ( PPTVT ), have been synthesized through a Horner coupling reaction. From the FTIR and 1H NMR spectroscopy, the configuration of the vinylene groups in the polymers was all trans (E) geometry. The weight‐average molecular weights (Mw) of PPBT and PPTVT were found to be 11,700 and 11,800, with polydispersity indices of 2.51 and 2.53, respectively. PPBT and PPTVT thin films exhibit UV–visible absorption maxima at 538 and 558 nm, respectively, and the strong absorption shoulder peaks at 578 and 602 nm, respectively. Solution processed field‐effect transistors (FET) fabricated using all the polymers showed p‐type OTFT characteristics. The field‐effect mobility of the PPTVT was obtained up to 2.3 × 10?3 cm2 V?1 s?1, an on/off ratio of 1.0 × 105 with ambient air stability. Studies of the atomic force microscopy (AFM) and X‐ray diffraction (XRD) analysis of the polymer thin films revealed that all the polymers were amorphous structure. The greater planarity and rigidity of PPTVT compared to PPBT results in elongation of conjugation length and better π–π stacking of polymer chains in amorphous region, which leads to improved FET performance. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 111–120, 2009  相似文献   

11.
A new aromatic host polymer poly{[1,4‐bis(9‐decylcarbazole‐3‐yl)‐2,3,5,6‐tetrafluorobenzene‐3,3′‐diyl]‐alt‐[N‐methylisatin‐2‐one‐3,3‐diyl]} (PICzFB) containing carbazole–tetrafluorinebeneze–carbazole moiety in the π‐conjugated interrupted polymer backbone was synthesized by superacid‐catalyzed metal‐free polyhydroxyalkylation. The resulted copolymer PICzFB showed a comparatively wide band gap up to 3.32 eV and high triplet energy (ET) of 2.73 eV due to confined conjugation by the δ? C bond interrupted polymer backbone. Blue and green light‐emitting devices with PICzFB as host, FIrpic and Ir(mppy)3 as phosphorescent dopants showed the maximum luminous efficiencies of 5.0 and 27.6 cd/A, respectively. The results suggested that the strategy of incorporating bipolar unit into the π‐conjugated interrupted polymer backbone can be a promising approach to obtain host polymer with high triplet level for solution‐processed blue and green phosphorescent polymer light‐emitting diodes. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 1037–1046  相似文献   

12.
The structurally ordered polymer, triphenylamine‐pendant polypeptide (PATPA: poly[γ‐4‐(N,N‐diphenylamino‐phenyl)‐L ‐glutamine]), was prepared in order to obtain high hole mobility and high thermal stability. The hole mobility obtained for PATPA (ca. 10−5 cm2/Vsec) at room temperature is higher than that for poly(N‐vinylcarbazole) (PVK) (ca. 10−7 cm2/Vsec) or that of carbazole‐pendant polypeptide (PCLG) (ca. 10−8 cm2/Vsec). These results are supported by thermally stimulated current (TSC) measurements because the TSC can be correlated with the mobility. The glass‐transition temperature (Tg) of PATPA was estimated to be about 130° by differential scanning calorimetry (DSC). From these results, PATPA is an alternative candidate as a photoconductive polymer with high thermal stability and high hole mobility. The ordered structure along the main chain is thought to facilitate hole transport. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 362–368, 2000  相似文献   

13.
We report novel host polymers for a high‐efficiency polymer‐based solution‐processed phosphorescent organic light‐emitting diode with typical blue‐emitting dopant bis(4,6‐difluorophenylpyridinato‐N,C2)iridium(III) picolinate (FIrpic). The host polymers, soluble polynorbornenes with pendant carbazole derivatives, N‐phenyl‐9H‐carbazole ( P1 ), N‐biphenyl‐9H‐carbazole ( P2 ), and 9,9′‐(1,3‐phenylene)bis‐9H‐carbazole (mCP) ( P3 ) are efficiently synthesized by vinyl addition polymerization of norbornene monomers using Pd(II) catalyst in combination with 1‐octene chain transfer agent. The polymers exhibit high thermal stability with high decomposition (Td5 > 410 °C) and glass transition temperatures (Tg ≈ 268 °C). The HOMO (ca. ?5.5 to ?5.7 eV) and LUMO (ca. ?2.0 to ?2.1 eV) levels with the high triplet energy of about 2.7–3.0 eV suggest that the polymers are suitable for a host material for blue emitters. Among the solution‐processed devices that were fabricated based on the emissive layers containing the P1 ? P3 host doped with various concentrations of FIrpic (7–13 wt %), the best device with P3 host exhibits power efficiency of 3.0 lm W?1 and external quantum efficiency of 4.0% at a luminance of 1000 cd m?2 that is outstanding among the polymeric rivals. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

14.
Two series of novel random polyfluorene copolymers containing quinoxaline units were prepared by stressing the coupling according to Yamamoto. The first series contains 2,3‐bis‐(4′‐tert‐butyl‐biphenyl‐4‐yl)benzo[g]quinoxaline and the second series 2,3‐bis‐(4′‐tert‐butyl‐biphenyl‐4‐yl)quinoxaline as energy accepting unit. The copolymers were identified by gel permeation chromatography, infrared spectroscopy, and nuclear magnetic resonance spectroscopy. Thermal properties were analyzed by thermal gravimetric analysis and differential scanning calorimetry revealing amorphous copolymers that are stable up to 430 °C. The morphology was investigated using atomic force microscopy. The optical properties in solutions and thin films were analyzed. Furthermore, the thin film electro‐optical properties were determined in monolayer polymer light‐emitting devices. Single layer devices were built with efficiencies ranging from 0.15 to 2.0 cd/A. For the random copolymers with 5 mol % benzo[g]quinoxazoline in the polyfluorene backbone some threefold efficiency enhancement from 1.1 to 3.0 cd/A was achieved by utilizing an ultra thin interlayer of poly(9,9‐di‐n‐octylfluorene‐2,7‐diyl)‐alt‐[1,4‐phenylene‐(4‐sec‐butylphenylimino)‐1,4‐phenylene] between PEDOT:PSS and the emissive random copolymer layer. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 4773–4785, 2007  相似文献   

15.
Novel naphtho[1,2‐b:5,6‐b′]dithiophene (NDT) and diketopyrrolopyrrole (DPP)‐containing donor‐acceptor conjugated polymers (PNDTDPPs) with different branched side chains were synthesized via Pd(0)‐catalyzed Stille coupling reaction. Octyldodecyl (OD) and dodecylhexadecyl (DH) groups were tethered to the DPP units as the side chains. The soluble fraction of PNDTDPP‐OD polymer in chloroform has much lower molecular weight than that of PNDTDPP‐DH polymer. PNDTDPP‐DH polymer bearing relatively longer DH side chains exhibited much better charge‐transport behavior than PNDTDPP‐OD polymer with shorter OD side chains. The thermally annealed PNDTDPP‐DH polymer thin films exhibited an outstanding charge carrier mobility of ~1.32 cm2 V?1 s?1 (Ion/Ioff ~ 108) measured under ambient conditions, which is almost six times higher than that of thermally annealed PNDTDPP‐OD polymer thin films. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 5280–5290  相似文献   

16.
A new carbazole‐derived, triphenylamine (TPA)‐containing aromatic dicarboxylic acid monomer, 4,4′‐dicarboxy‐4″‐(3,6‐di‐tert‐butylcarbazol‐9‐yl)TPA, was synthesized, and it led to a series of electroactive aromatic polyamides with main‐chain TPA and pendent 3,6‐bis(tert‐butyl)carbazole units by reacting it with various aromatic diamines via the phosphorylation polyamidation technique. The polyamides were amorphous with good solubility in many organic solvents and could be solution‐cast into flexible and strong films. They showed high glass‐transition temperatures (282–335 °C) and high thermal stability (10% weight loss temperatures >480 °C). The electroactive polymer films had well‐defined and reversible redox couples with good cycle stability in acetonitrile solutions. The polymer films also exhibited fluorescent and multielectrochromic behaviors. The anodically electrochromic polyamide films had moderate coloration efficiency (~100 cm2/C) and high optical contrast ratio of transmittance change (Δ%T) up to 47% at 813 nm and 48% at 414 nm for the green coloring. After hundreds of cyclic switches, the polymer films still retained good redox and electrochromic activity. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

17.
The postmodification of poly[9‐(2‐hexyldecyl)‐9H‐carbazole‐2,7‐diyl] ( P1 ) upon its reaction with N‐bromosuccinimide affords exclusive and full bromination of the 3,6‐positions of the carbazole repeat units to yield poly[3,6‐dibromo‐9‐(2‐hexyldecyl)‐9H‐carbazole‐2,7‐diyl] ( P2 ). Brominated polymer P2 can be used as a precursor for further functionalization at the 3,6‐positions with the desired functional group to afford other useful polymers. Polymer P2 has hence been reacted with copper(I) cyanide to afford poly[3,6‐dicyano‐9‐(2‐hexyldecyl)‐9H‐carbazole‐2,7‐diyl] ( P3 ). Full substitution of the bromide groups with nitrile‐functional groups has been achieved. The preparation and structural characterization of polymers P2 and P3 are presented together with studies on their electronic conjugation and photoluminescence properties. Cyclic voltammetry studies on polymer P3 indicate that the new polymer is easier to reduce (n‐dope) but more difficult to oxidize than its unsubstituted counterpart ( P1 ) as a result of the introduction of the electron‐withdrawing nitrile‐functional groups at the 3,6‐positions on the carbazole repeat units on the polymer chains. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 3336–3342, 2006  相似文献   

18.
This article reports the synthesis, one‐ and two‐photon absorption, and excited fluorescence properties of poly(1,4‐diketo‐3,6‐diphenylpyrrolo[3,4‐c]pyrrole‐alt‐N‐octyl‐3,6‐carbazole/2,7‐fluorene) ( PDCZ / PDFL ). PDCZ and PDFL are synthesized by the Suzuki cross‐coupling of 2,5‐dioctyl‐1,4‐diketo‐3,6‐bis(p‐bromophenylpyrrolo[3,4‐c]pyrrole and N‐octyl‐3,6‐bis(3,3‐dimethyl‐1,3,2‐dioxaborolan‐2‐yl)carbazole or 2,7‐bis(3,3‐dimethyl‐1,3,2‐dioxaborolan‐2‐yl)fluorene and have number‐average molecular weights of 8.5 × 103 and 1.14 × 104 g/mol and polydispersities of 2.06 and 1.83, respectively. They are highly soluble in common organic solvents and emit strong orange one‐ and two‐photon excited fluorescence (2PEF) in THF solution and exhibit high light and heat stability. The maximal two‐photon absorption cross‐sections (δ) measured in THF solution by the 2PEF method using femtosecond laser pulses are 970 and 900 GM per repeating unit for PDCZ and PDFL , respectively. These 1,4‐diketo‐pyrrolo[3,4‐c]pyrrole‐containing polymers with full aromatic structure and large δ will be promising high‐performance 2PA dyes applicable in two‐photon science and technology. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 944–951  相似文献   

19.
New donor–acceptor (D‐A) polymers, poly(4,5‐bis(2‐octyldodecyloxy)naphto[2,1‐b:3,4‐b']dithiophenebenzo[c][1,2,5]thiadiazole) (PNDT‐B) and poly(4,5‐bis(2‐octyldodecyloxy)naphto [2,1‐b:3,4‐b′]dithiophene‐4,7‐di(thiophen‐2‐yl)benzo[c][1,2,5]thiadiazole) (PNDT‐TBT), with the extended π‐electron delocalization of naphtho[2,1‐b:3,4‐b']dithiophene, were successfully synthesized by Suzuki and Stille coupling reactions. The structure and physical properties of polymers were characterized by DFT calculation, UV–vis absorption, cyclovoltammetry, TGA and DSC analyses. X‐ray diffraction studies indicated a relatively highly ordered intermolecular structure in PNDT‐TBT after annealing. This high degree of molecular order resulted from the crystallinity and increasing planarity, provided by the thiophene linker groups and the interdigitation of the long alkoxy side chains. The new D‐A polymer, PNDT‐TBT, exhibited a p‐type carrier mobility of 0.028 cm2/Vs and an on/off ratio of 5.9 × 103. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 525–531  相似文献   

20.
Synthesis, characterization, and polymer solar cell and transistor application of a series of phenanthro[1,2‐b:8,7‐b′]dithiophene‐based donor–acceptor (D–A)‐type semiconducting polymers combined with a diketopyrrolopyrrole unit are reported. The present polymers showed some unique features such as strong aggregation behavior, high thermal stability, and short π–π stacking distance (3.5–3.6 Å), which are suitable for high performance organic materials. In addition, they have a significantly extended absorption up to 1000 nm with a band gap of ca. 1.2 eV. However, such strong intermolecular interaction reduced their solubility and molecular weights, which resulted in low crystalline nature and moderate field‐effect mobility of 0.01 cm2 V?1 s?1. Furthermore, such strong aggregation behavior led to the large‐scale phase separation in the blend films, which may prevent the effective photocurrent generation, limiting Jsc and power conversion efficiency of 2.0%. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 709–718  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号