共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Hui‐Chao Lu Yang Xue Qiao‐Ling Zhao Jin Huang Shen‐Gang Xu Shao‐Kui Cao Zhi Ma 《Journal of polymer science. Part A, Polymer chemistry》2012,50(17):3641-3647
Well‐defined amphiphilic polymethylene‐b‐poly (acrylicacid) diblock copolymers have been synthesized via a new strategy combining polyhomologation and atom transfer radical polymerization (ATRP). Hydroxyl‐terminated polymethylenes (PM‐OH) with different molecular weights and narrow molecular weight distribution are obtained through the polyhomologation of dimethylsulfoxonium methylides following quantitative oxidation via trimethylamine‐N‐oxide dihydrate. Subsequently, polymethylene‐based macroinitiators (PM‐MIs Mn = 1,300 g mol?1 [Mw/Mn = 1.11] and Mn = 3,300 g mol?1 [Mw/Mn = 1.04]) are synthesized by transformation of terminal hydroxyl group of PM‐OH to α‐haloester in ~100% conversion. ATRPs of tert‐butyl acrylate (t‐BuA) are then carried out using PM‐MIs as initiator to construct PM‐b‐P(t‐BuA) diblock copolymers with controllable molecular weight (Mn = 8,800–15,800 g mol?1 Mw/Mn = 1.04–1.09) and different weight ratio of PM/P(t‐BuA) segment (1:1.7–1:11.2). The amphiphilic PM‐b‐PAA diblock copolymers are finally prepared by hydrolysis of PM‐b‐P(t‐BuA) copolymers and their self‐assembly behavior in water is preliminarily investigated via the determination of critical micelle concentrations, dynamic light scattering, and transmission electron microscope (TEM). © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012 相似文献
3.
Jean‐Marc Schumers Charles‐André Fustin Jean‐François Gohy 《Journal of polymer science. Part A, Polymer chemistry》2012,50(3):599-608
The light‐responsive behavior in solution and in thin films of block copolymers bearing 2‐nitrobenzyl photocleavable esters as side groups is discussed in this article. The polymers were synthesized by grafting 2‐nitrobenzyl moieties onto poly(acrylic acid)‐block‐polystyrene (PAA‐b‐PS) precursor polymers, leading to poly(2‐nitrobenzyl acrylate‐random‐acrylic acid)‐block‐polystyrene (P(NBA‐r‐AA)‐b‐PS) block copolymers. The UV irradiation of the block copolymers in a selective solvent for PS led to the formation of micelles that were used to trap hydrophilic molecules inside their core (light‐induced encapsulation). In addition, thin films consisting of light‐responsive P(NBA‐r‐AA) cylinders surrounded by a PS matrix were achieved by the self‐assembly of P(NBA‐r‐AA)‐b‐PS copolymers onto silicon substrates. Exposing these films to UV irradiation generates nanostructured materials containing carboxylic acids inside the cylindrical nanodomains. The availability of these chemical functions was demonstrated by reacting them with a functional fluorescent dye. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011 相似文献
4.
Peng Zou Li‐Ping Yang Cai‐Yuan Pan 《Journal of polymer science. Part A, Polymer chemistry》2008,46(23):7628-7636
The linear poly(ε–caprolacton)‐b‐hyperbrached poly(2‐((α‐bromobutyryl)oxy)ethyl acrylate) (LPCL‐b‐HPBBEA) has been successfully synthesized by simultaneous ring‐opening polymerization (ROP) of CL and self‐condensing vinyl polymerization (SCVP) of BBEA in one‐pot. The HPBBEA homopolymers were found to be formed in the polymerization because of the competitive reactions induced by initiation with bifunctional initiator, 2‐hydroxylethyl‐2′‐bromoisobutyrate (HEBiB), and inimer BBEA. The separation of LPCL‐b‐HPBBEA from the polymerization products was achieved by precipitation in methanol. With feed ratio increase of CL and BBEA to HEBiB, the molecular weights of PCL and HPBBEA blocks in the block copolymer enhanced; and the polymerization rate of CL started to decrease gradually after 12 h of polymerization, but the polymerization rate of BBEA was maintained until 24 h of polymerization. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 7628–7636, 2008 相似文献
5.
Weidong Zhang Wei Zhang Nianchen Zhou Jian Zhu Zhenping Cheng Xiulin Zhu 《Journal of polymer science. Part A, Polymer chemistry》2009,47(22):6304-6315
The novel trifunctional initiator, 1‐(4‐methyleneoxy‐2,2,6,6‐tetramethylpip‐eridinoxyl)‐3,5‐bi(bromomethyl)‐2,4,6‐trimethylbenzene (TEMPO‐2Br), was successfully synthesized and used to prepare the miktoarm star amphiphilic poly(styrene)‐(poly(N‐isopropylacrylamide))2 (PS(PNIPAAM)2) via combination of atom transfer radical polymerization (ATRP) and nitroxide‐mediated radical polymerization (NMRP) techniques. Furthermore, the star amphiphilic block copolymer, poly (styrene)‐(poly(N‐isopropylacrylamide‐b‐4‐vinylpyridine))2 (PS(PNIPAAM‐b‐P4VP)2), was also prepared using PS(PNIPAAM)2 as the macroinitiator and 4‐vinylpyridine as the second monomer by ATRP method. The obtained polymers were well‐defined with narrow molecular weight distributions (Mw/Mn ≤ 1.29). Meanwhile, the self‐assembly behaviors of the miktoarm amphiphilic block copolymers, PS(PNIPAAM)2 and PS(PNIPAAM‐b‐P4VP)2, were also investigated. Interestingly, the aggregate morphology changed from sphere‐shaped micelles (4.7 < pH < 3.0) to a mixture of spheres and rods (1.0 < pH < 3.0), and rod‐shaped nanorods formed when pH value was below 1.0. The LCST of PS(PNIPAAM)2 (pH = 7) was about 31 °C and the LCST of PS(PNIPAAM‐b‐P4VP)2 was about 35 °C (pH = 3). © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 6304–6315, 2009 相似文献
6.
Daria E. Lonsdale Michael J. Monteiro 《Journal of polymer science. Part A, Polymer chemistry》2011,49(21):4603-4612
We demonstrated the synthesis of miktoarm star block copolymers of AB, AB2, and A2B, in which block A consisted of linear poly(tert‐butyl acrylate) (PtBA) and block B consisted of cyclic polystyrene. These structures were produced using the atom transfer radical polymerization to make telechelic polymers that, after modification, were further coupled together by copper‐catalyzed “click” reactions with high coupling efficiency. Deprotection of PtBA to poly(acrylic acid) (PAA) afforded amphiphilic miktoarm structures that when micellized in water gave vesicle morphologies when the block length of PAA was 21 units. Increasing the PAA block length to 46 units produced spherical core‐shell micelles. AB2 miktoarm stars packed more densely into the core compared to its linear counterpart (i.e., a four times greater aggregation number with approximately the same hydrodynamic diameter), resulting in the PAA arms being more compressed in the corona and extending into the water phase beyond its normal Gaussian chain conformation. These results show that the cyclic structure attached to an amphiphilic block has a significant influence on increasing the aggregation number through a greater packing density. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011. 相似文献
7.
Xueguang Jiang Bin Zhao 《Journal of polymer science. Part A, Polymer chemistry》2007,45(16):3707-3721
The effects of hydrophobic chain end groups on the cloud points of thermo‐sensitive water‐soluble polystyrenics were investigated. Well‐defined poly (4‐vinylbenzyl methoxytris(oxyethylene) ether) (PTEGSt) and poly(α‐hydro‐ω‐(4‐vinylbenzyl)tetrakis(oxyethylene)) (PHTrEGSt) were prepared by nitroxide‐mediated radical polymerization using α‐hydrido alkoxyamine initiators including two monomer‐based initiators. The polymers were reduced with (n‐Bu)3SnH to replace the alkoxyamine end group with hydrogen. In the studied molecular weight range (Mn,GPC = 3000 to 28,000 g/mol), we found that the hydrophobic end groups decreased the cloud point by 1–20 °C depending on the molecular weight and the largest depression was observed at the lowest molar mass. The cloud points of PTEGSt and PHTrEGSt with two hydrophobic end groups, phenylethyl and alkoxyamine, exhibited a monotonic increase with the increase of molecular weight. For polymers with only one hydrophobic end group, either phenylethyl or alkoxyamine, the cloud point initially increased with the increase of molecular weight but leveled off/decreased slightly with further increasing molar mass. For polymers with essentially no end groups, the cloud point decreased with the increase of chain length, which represents the “true” molecular weight dependence of the cloud point. The observed molecular weight dependences of the cloud points of polystyrenics with hydrophobic end group(s) are believed to result from the combined end group effect and “true” molecular weight effect. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 3707–3721, 2007 相似文献
8.
Jui‐Hsiang Liu Yi‐Hong Chiu 《Journal of polymer science. Part A, Polymer chemistry》2010,48(5):1142-1148
A novel monomer, ethyl 4‐[4‐(11‐methacryloyloxyundecyloxy)phenyl azobenzoyl‐oxyl] benzoate, containing a photoisomerizable N?N group was synthesized. The monomer was further diblock copolymerized with methyl methacrylate. Amphiphilic diblock copolymer poly(methyl methacrylate‐block‐ethyl 4‐[4‐(11‐methacryloyloxyundecyloxy)phenyl azobenzoyl‐oxyl] benzoate ( PMMA ‐ b ‐ PAzoMA ) was synthesized using atom transfer radical polymerization. The reverse micelles with spherical construction were obtained with 2 wt % of the diblock copolymer in a THF/H2O mixture of 1:2. Under alternating UV and visible light illumination, reversible changes in micellar structure between sphere and rod‐like particles took place as a result of the reversible E‐Z photoisomerization of azobenzene segments in PMMA ‐ b ‐ PAzoMA . Microphase separation of the amphiphilic diblock copolymer in thin films was achieved through thermal and solvent aligning methods. The microphases of the annealed thin films were investigated using atom force microscopy topology and scanning electron microscopy analyses. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 1142–1148, 2010 相似文献
9.
Carl N. Urbani Daria E. Lonsdale Craig A. Bell Michael R. Whittaker Michael J. Monteiro 《Journal of polymer science. Part A, Polymer chemistry》2008,46(5):1533-1547
Enhancing the structural complexity and functionality of the building blocks allows the construction of supramolecular assemblies. In this work, we demonstrate a strategy for the design and synthesis of complex macromolecular architectures. We use atom transfer radical polymerization to produce well‐defined polymers with telechelic end‐group functionality, and “click” them together to form functional 3rd generation dendrons, and incorporated degradable linkages and certain functionality at the polymer chain‐ends of each generation. The 3rd generation polymeric dendrons consisted of homopolymer polystyrene (PSTY) with either four solketals or eight alcohols, diblock PSTY and poly(t‐butyl acrylate), and amphiphilic diblock. The peripheral ends consisting of alcohols create functionalization points for further chemical modification or chemical coupling and the cleavable linkages between the 2nd and 3rd generations all provide the first steps toward smart nanostructures. Importantly, we can synthesize these dendrons in pure form. The self‐assembly of the amphiphilic dendrons (the inner and outer generations consisting of PSTY and polyacrylic acid, respectively) in water produced micelles of uniform size with an aggregation number of 43 dendrons per micelle. The size of the micelles was small (DH =20.7 nm) and comparable to the size found by transmission electron microscopy (14–18 nm). © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 1533–1547, 2008 相似文献
10.
Peng Zhang Jeffrey S. Moore 《Journal of polymer science. Part A, Polymer chemistry》2000,38(1):207-219
Poly(ethylethylene‐b‐ethylene oxide) (PEE‐PEO) diblock copolymers with pyridine‐benzoic acid end‐groups for heterodimeric hydrogen bonding were designed as a possible means to noncentrosymmetric organizations by spontaneous self‐assembly. These end‐functionalized polymers were synthesized by anionic living polymerization with protected initiator and terminating reagents. A series of polymeric intermediates with different end‐groups was characterized by proton nuclear magnetic resonance, matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry, and gel permeation chromatography. Preliminary studies of solid‐state organization by differential scanning calorimetry and small‐angle X‐ray scattering provided evidence for a long‐range order that was sensitive to chain length, copolymer composition, and end‐group structure. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 207–219, 2000 相似文献
11.
Kessel S Urbani CN Monteiro MJ 《Angewandte Chemie (International ed. in English)》2011,50(35):8082-8085
Controlled formation of a variety of 3D structures was observed at high polymer weight fractions in water from a single diblock, consisting of poly(N-isopropylacrylamide), PNIPAM, and polystyrene, PSTY segments. The structures form through a mechanical process driven by swelling of hydrophilic polymer segments upon a change in temperature (see picture, SDS=sodium dodecylsulfate). 相似文献
12.
Fengjun Hua Xueguang Jiang Dejin Li Bin Zhao 《Journal of polymer science. Part A, Polymer chemistry》2006,44(8):2454-2467
We report the synthesis and thermosensitive properties of well‐defined water‐soluble polyacrylates and polystyrenics with short pendant oligo(ethylene glycol) groups. Four monomers, methoxydi(ethylene glycol) acrylate (DEGMA), methoxytri(ethylene glycol) acrylate (TEGMA), α‐hydro‐ω‐(4‐vinylbenzyl)tris(oxyethylene) (HTEGSt), and α‐hydro‐ω‐(4‐vinylbenzyl)tetrakis(oxyethylene) (HTrEGSt), were prepared and polymerized by nitroxide‐mediated radical polymerization with 2,2,5‐trimethyl‐3‐(1‐phenylethoxy)‐4‐phenyl‐3‐azahexane as an initiator. Kinetics and gel permeation chromatography analysis showed that the polymerizations were controlled processes yielding polymers with controlled molecular weights and narrow polydispersities. All polymers could be dissolved in water, forming transparent solutions, and undergo phase transitions when the temperature was above a critical point. The thermosensitive properties were studied by turbidimetry and variable‐temperature 1H NMR spectroscopy. The cloud points of the polymers of DEGMA, TEGMA, HTEGSt, and HTrEGSt were around 38, 58, 13, and 64 °C, respectively. For all four polymers, the cloud point increased with decreasing concentration and increasing molecular weight in the studied molecular weight range of 5000–30,000 g/mol. The removal of the nitroxide group from the polymer chain end resulted in a higher cloud point. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 2454–2467, 2006 相似文献
13.
14.
Shiao‐Wei Kuo Hsin‐Fang Lee Chih‐Feng Huang Cheng‐Jynn Huang Feng‐Chih Chang 《Journal of polymer science. Part A, Polymer chemistry》2008,46(9):3108-3119
Three amphiphilic rod‐coil diblock copolymers, poly(2‐ethyl‐2‐oxazoline‐b‐γ‐benzyl‐L ‐glutamate) (PEOz‐b‐PBLG), incorporating the same‐length PEOz block length and various lengths of their PBLG blocks, were synthesized through a combining of living cationic and N‐carboxyanhydride (NCA) ring‐opening polymerizations. In the bulk, these block copolymers display thermotropic liquid crystalline behavior. The self‐assembled aggregates that formed from these diblock copolymers in aqueous solution exhibited morphologies that differed from those obtained in α‐helicogenic solvents, that is, solvents in which the PBLG blocks adopt rigid α‐helix conformations. In aqueous solution, the block copolymers self‐assembled into spherical micelles and vesicular aggregates because of their amphiphilic structures. In helicogenic solvents (in this case, toluene and benzyl alcohol), the PEOz‐b‐PBLG copolymers exhibited rod‐coil chain properties, which result in a diverse array of aggregate morphologies (spheres, vesicles, ribbons, and tube nanostructures) and thermoreversible gelation behavior. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 3108–3119, 2008 相似文献
15.
Magorzata Bako Przemysaw Kubisa 《Journal of polymer science. Part A, Polymer chemistry》2004,42(5):1189-1197
Graft copolymers consisting of the polyacetal backbone substituted with ? COO? groups and poly(oxyethylene) (POE) side chains in different proportions were synthesized, and their efficiency as modifiers of the processes occurring at the interphase between inorganic particles and the surrounding aqueous phase was studied. The series of double hydrophilic graft copolymers (DHGC) was obtained differing in the length of the main chain, the number of carboxylate groups, and the number of POE side chains in the macromolecule. Studies of the effect of DHGC on the stability of aqueous calcium carbonate (CaCO3) suspensions and on the shape and size of the CaCO3 crystals formed in the presence of DHGC allowed us to draw some conclusions concerning the effect of the structure of DHGC on their efficiency as modifiers of the processes occurring at the interphase between inorganic particles and the surrounding aqueous phase. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 1189–1197, 2004 相似文献
16.
Yanfeng Zhang Hao Liu Hefei Dong Changhua Li Shiyong Liu 《Journal of polymer science. Part A, Polymer chemistry》2009,47(6):1636-1650
Amphiphilic ABC miktoarm star terpolymers consisting of polystyrene, poly(ε‐caprolactone), and poly(N‐isopropylacrylamide) arms, PS(‐b‐PNIPAM)‐b‐PCL, were synthesized via a combination of atom transfer radical polymerization, ring‐opening polymerization (ROP), and click chemistry. Difunctional PS bearing an alkynyl and a primary hydroxyl moiety at the chain end, PS‐alknyl‐OH, was prepared by reacting azido‐terminated PS with an excess of 3,5‐bis(propargyloxy)benzyl alcohol (BPBA) under click conditions. The subsequent ROP of ε‐caprolactone using PS‐alknyl‐OH macroinitiator afforded PS(‐alkynyl)‐b‐PCL copolymer bearing an alkynyl moiety at the diblock junction point. Target PS(‐b‐PNIPAM)‐b‐PCL amphiphilic ABC miktoarm star terpolymers were then prepared via click reaction between PS(‐alkynyl)‐b‐PCL and an excess of azido‐terminated PNIPAM (PNIPAM‐N3). The removal of excess PNIPAM‐N3 was accomplished by “clicking” onto alkynyl‐functionalized Wang resin. All the intermediate and final products were characterized by gel permeation chromatography, 1H NMR, and FTIR. In aqueous solution, the obtained amphiphilic ABC miktoarm star terpolymer self‐assembles into micelles possessing mixed PS/PCL cores and thermoresponsive shells, which were further characterized by dynamic laser light scattering and transmission electron microscopy. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 1636–1650, 2009 相似文献
17.
Sang‐Ho Lee Makoto Ouchi Mitsuo Sawamoto 《Journal of polymer science. Part A, Polymer chemistry》2013,51(21):4498-4504
Hydrogen bonding self‐assemblies were formed in an aqueous medium from a pair of an amphiphilic ABA triblock copolymer and a hydrophobic homopolymer, both with a triple hydrogen bonding site that was complementary to each other and precisely placed at the main‐chain center: (PEGMA)m–(MMA)n– ADA –(MMA)n–(PEGMA)m and (MMA)p– DAD –(MMA)p ( A = hydrogen acceptor; D = hydrogen donor; PEGMA: PEG methacrylate; MMA: methyl methacrylate). The polymers were synthesized by the ruthenium‐catalyzed living radial polymerization with bifunctional initiators (Br– ADA –Br and Cl– DAD –Cl) aiming at pinpoint chain center functionalization to give a symmetric segmental sequence; ADA and DAD initiators were derived from 2,6‐diaminopyridine and thymine, respectively. On mixed equimolar in tetrahydrofuran (THF), both polymers spontaneously associated, and the apparently 1:1 assembly further grew into higher aggregate particles on subsequent addition of water. The aggregates in water/THF were relatively stable and uniform in size, which most likely stems from the intermolecular complementary hydrogen bond interaction at polymer chain centers. In sharp contrast, an equimolar mixture of ADA ‐block polymer and DAD ‐free poly(MMA) in water/THF resulted in larger and irregular particles, and thus short‐lived to eventually collapse. These results indicate that, however structurally marginal, precise pinpoint functionalization of macromolecular chains allows stable self‐assemblies via complementary hydrogen bond interaction even in aqueous media. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 4498–4504 相似文献
18.
Wanbin Zhang Xiaodong Fan Haitao Zhang Xiuzhong Zhu Wei Tian 《Journal of polymer science. Part A, Polymer chemistry》2016,54(11):1537-1547
A novel aromatic acetal‐based acid‐labile monomer 2‐phenyl‐5‐ethyl‐5‐acryloxymethyl‐1,3‐dioxacyclohexane (HEDPA) was synthesized and polymerized by reversible addition fragmentation chain transfer (RAFT) polymerization using alkynyl functional chain transfer agent (CTA‐Alk). Afterward, a series of amphiphilic diblock copolymers composed of fixed hydrophobic poly(2‐phenyl‐5‐ethyl‐5‐acryloxymethyl‐1,3‐dioxacyclohexane) (PDAEP) segments and various lengths of hydrophilic mPEG segments were prepared through click reaction between alkynyl‐terminated PDAEP and azido‐terminated mPEG. The self‐assembly behaviors of the diblock copolymers were investigated by dynamic light scattering (DLS), transmission electron microscopy (TEM), fluorescence spectroscopy, and 1H NMR. These results indicated that the diblock copolymers could self‐assemble into nano‐sized micelles with PDAEP cores and PEG coronas in aqueous solution. DLS, fluorescence spectroscopy and UV–vis spectroscopy were used to monitor the pH‐triggered assembly/disassembly transition of the micelles. These results showed that the assembly/disassembly transition behaviors of the diblock copolymers micelles can be adjusted by changing the lengths of the mPEG segments. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 1537–1547 相似文献
19.
Kazuo Sugiyama Kohei Shiraishi Takako Matsumoto 《Journal of polymer science. Part A, Polymer chemistry》2003,41(13):1992-2000
Poly[2‐(methacryloyloxy)ethyl phosphorylcholine]s (PMPCs) with one pendant cholesteryl moiety at the polymer end (PMPC‐Chol‐I and PMPC‐Chol‐II) and two pendant cholesteryl moieties at both polymer ends as terminal groups (PMPC‐2Chol‐I and PMPC‐2Chol‐II) were prepared by the radical polymerization of 2‐(methacryloyloxy)ethyl phosphorylcholine initiated with 4,4′‐azobis[(3‐cholesteryl)‐4‐cyanopentanoate] in the presence of 2‐mercaptoethanol or thiocholesterol as chain‐transfer reagents, respectively. The self‐organization of PMPC‐Chol and PMPC‐2Chol was analyzed with fluorescence and 1H NMR measurements. The critical micelle concentrations of PMPC‐Chol‐I with a degree of polymerization (Pn) of 91 and of PMPC‐2Chol‐I with a Pn value of 165 were 250 and 27 mg L?1, respectively. The blood compatibility of PMPC‐2Chol was evaluated from the Michaelis constant (Km) for the enzymatic reaction of thrombin and a synthetic substrate, S‐2238, in the presence of PMPC‐2Chol. Km was 0.07, 0.05, and 0.56 for PMPC‐2Chol‐I with Pn = 165, PMPC‐2Chol‐II with Pn = 38, and PMPC (an intrinsic viscosity of 0.54 dL g?1) initiated with 2,2′‐azobisisobutyronnitrile in the absence of chain transfer agent, respectively. A mixture of PMPC‐2Chol‐II and cholesterol as a drug model formed a lamellar type of complex with an interplanar spacing of d = 35.2 Å. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 1992–2000, 2003 相似文献
20.
David Xie Sandra Tomczak Thieo E. Hogen‐Esch 《Journal of polymer science. Part A, Polymer chemistry》2001,39(9):1403-1418
Polydimethylacrylamides (PDMAs) end‐functionalized with hydrophobic groups were synthesized by the reaction of cesium salts of one‐ or two‐ended living PDMA anion with octadecanoyl and perfluorooctanoyl chlorides and with α‐phenylacrylate monomers containing an octadecyl group attached via oligooxyethylene spacers to the acrylate functionality. Size exclusion chromatography or NMR studies indicated that the end functionalizations were nearly quantitative. Reduced viscosity measurements were consistent with predominantly dimeric association of the perfluorooctanoyl‐end‐functionalized PDMAs. The association of the two‐ended, perfluorooctanoyl‐ and octadecanoyl‐functionalized polymers was more extensive and consistent with pairwise association. Furthermore, the presence of oligoethylene oxide spacers between the octadecyl and α‐phenylacrylate groups greatly enhanced the hydrophobic association of bis(octadecyl)‐end‐functionalized PDMA. © 2001 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 1403–1418, 2001 相似文献