首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Three chiral polymers P‐1 , P‐2 , and P‐3 could be obtained by the polymerization of (R)‐6,6′‐dibutyl‐3,3′‐diiodo‐2, 2′‐binaphthol (R‐M‐1) , (R)‐6,6′‐dibutyl‐3,3′‐diiodo‐2,2′‐bisoctoxy‐1,1′‐binaphthyl ( R‐M‐2 ), and (R)‐6,6′‐dibutyl‐3,3′‐diiodo‐2,2′‐bis (diethylaminoethoxy)‐1,1′‐binaphthyl ( R‐M‐3 ) with 4,7‐diethynyl‐benzo[2,1,3]‐thiadiazole ( M‐1) via Pd‐catalyzed Sonogashira reaction, respectively. P‐1 , P‐2 , and P‐3 can show pale red, blue–green, and orange fluorescence. The responsive optical properties of these polymers on various metal ions were investigated by fluorescence spectra. Compared with other cations, such as Co2+, Ni2+, Ag+, Cd2+, Cu2+, and Zn2+, Hg2+ can exhibit the most pronounced fluorescence response of these polymers. P‐1 and P‐2 show obvious fluorescence quenching effect upon addition of Hg2+, on the contrary, P‐3 shows fluorescence enhancement. Three polymer‐based fluorescent sensors also show excellent fluorescence response for Hg2+ detection without interference from other metal ions. The results indicate that these kinds of tunable chiral polybinaphthyls can be used as fluorescence sensors for Hg2+ detection. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 997–1006, 2010  相似文献   

2.
A type of fluorescent–magnetic dual‐function nanocomposite, Fe3O4@SiO2@P‐2, was successfully obtained by Cu+‐catalyzed click reaction between acetylene (C?C? H)‐substituted carbazole‐based conjugated polymer ( P‐2) and azide‐terminated silica‐coated magnetic iron oxide nanoparticles (Fe3O4@SiO2–N3). Optical and magnetization analyses indicate that Fe3O4@SiO2@P‐2 exhibits stable fluorescence and rapid magnetic response. The fluorescence of Fe3O4@SiO2@P‐2 was quenched significantly in the presence of I? and gave a detection limit (DL) of ~8.85 × 10?7 M. Given the high binding constant and matching ratio between Hg2+ and I?, the fluorescence of Fe3O4@SiO2@P‐2/I? complex recovered efficiently with the addition of Hg2+. A DL of ~4.17 × 10?7 M was obtained by this probing system. Recycling of Fe3O4@SiO2@P‐2 probe was readily achieved by simple magnetic separation. Results indicate that Fe3O4@SiO2@P‐2 can be used as an “on–off–on” fluorescent switchable and recyclable Hg2+ probe. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 3636–3645  相似文献   

3.
A conjugated polymer was synthesized by the polymerization of 4,7‐dibromobenzo[2,1,3]thiadiazole ( M‐1 ) with tri{1,4‐diethynyl‐2,5‐bis(2‐(2‐methoxyethoxy)‐ethoxy)}‐benzene ( M‐2 ) via Pd‐catalyzed Sonogashira reaction. The polymer shows strong orange fluorescence. The responsive optical properties of the polymer on various metal ions were investigated through photoluminescence and UV–vis absorption measurements. The polymer displays highly sensitive and selective on‐off Hg2+ fluorescence quenching property in tetrahydrofuran solution in comparison with the other cations including Mg2+, Zn2+, Co2+, Ni2+, Cu2+, Ag+, Cd2+, and Pb2+. More importantly, the fluorescent color of the polymer sensor disappears after addition of Hg2+, which could be easily detected by naked eyes. The results indicate that this kind of polymer sensor incorporating benzo[2,1,3]thiadiazole moiety as a ligand can be used as a novel colorimetric and fluorometric sensor for Hg2+ detection. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

4.
A cationically charged conjugated polymer ( P2 ) functionalized with quaternary ammonium salt was newly synthesized via Suzuki cross‐coupling polymerization. The functionalized P2 features different fluorescence colors according to its phases (blue emission in solution and green emission as asolid) which is caused by intramolecular and intermolecular exciton migration, respectively. The use of P2 as a novel fluorescent sensing platform is demonstrated for mercury ion detection. The detection of mercury ions is accomplished in two steps: (1) the cationic, blue‐emitting P2 absorbs an anionic oligonucleotide, polythymidine ( PT ) via electrostatic interaction to form a complex with green emission due to aggregation between the two species; (2) the addition of mercury ions to the complex produces a new complex of PT ‐Hg2+ via more favorable specific interaction, resulting in the isolation of P2 and the consequent recovery of blue fluorescence of P2 . It suggests that this detection system has high selectivity and sensitivity down to the ~10?7 M level, even in mixtures of metal ions. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 2393–2400  相似文献   

5.
New water‐soluble hyperbranched polyfluorenes bearing carboxylate side chains have been synthesized by the simple “A2 + B2 + C3” protocol based on Suzuki coupling polymerization. The linear polyfluorene analogue LPFA was also synthesized for comparative investigation. The optical properties of the neutral precursory polymers in CHCl3 and final carboxylic‐anionic conjugated polyelectrolytes in buffer solution were investigated. The obtained hyperbranched polyelectrolyte HPFA2 with lower content of branch unit (2%) showed excellent solubility and high fluorescence quantum yield (?F = 89%) in aqueous solution. Fluorescence quenching of HPFA2 by different metal ions was also investigated, the polyelectrolyte showed high selectivity for Hg2+ and Cu2+ ions relative to other various metal ions in buffer solution. The Stern‐Volmer constant Ksv was determined to be 0.80 × 106 M?1 for Hg2+ and 3.11 × 106 M?1 for Cu2+, respectively, indicating the potential application of HPFA2 as a highly selective and sensitive chemosensor for Hg2+ and Cu2+ ions in aqueous solution. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 3431–3439, 2010  相似文献   

6.
A new poly(p‐phenylene ethynylene) derivative with pendant 2,2′‐bipyridyl groups and glycol units (PPE‐bipy) has been prepared, and its metal ion sensing properties were investigated. The polymer of PPE‐bipy exhibited high selectivity for Hg2+ as compared with Li+, Na+, K+, Ba2+, Ca2+, Mg2+, Al3+, Mn2+, Ag+, Zn2+, Pb2+, Ni2+, Cd2+, Cu2+, Co,2+ and Fe3+ in THF/EtOH (1:1, v/v) solution. The fluorescence of PPE‐bipy was efficiently quenched by Hg2+ ions, and the detection limit was found to be 8.0 nM in a THF/EtOH (1:1, v/v) solvent system. PPE‐bipy also showed a selective chromogenic behavior toward Hg2+ ions by changing the color of the solution from slight yellow to colorless, which can be detected with the naked eye. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 1998–2007, 2008  相似文献   

7.
Summary: A reversible and highly selective assay method has been developed to detect mercury(II ) (Hg2+) ions using a conjugated polymer (CP). The transduction mechanism is based on Hg2+‐mediated interpolymer π‐stacking aggregation, which results in the fluorescence self‐quenching of the CP. CPs that contain thymine moieties, poly[3‐(N‐thymin‐1‐ylacetyl)ethylamine‐thiophene] (PTT), have been synthesized and characterized. In the absence of Hg2+ ions, the PTT chains remain separated from each other and the CP exhibits strong fluorescence emission. Upon adding Hg2+ ions, the formation of interpolymer π‐stacking aggregation induced by specific thymine–Hg–thymine interactions results in the fluorescence quenching of PTT. Distinguishing aspects of this assay include the signal amplification of CPs and the specific binding of Hg2+ ions to thymine‐thymine (T–T) base pairs.

The binding of Hg2+ ions causes the separate conducting polymer chains to aggregate with subsequent fluorescence self‐quenching.  相似文献   


8.
Fe(0) was firstly used as single‐electron transfer‐living radical polymerization catalyst for acrylonitrile polymerization using carbon tetrachloride as initiator, hexamethylenetetramine as N‐ligand, and N,N‐dimethylformamide as the solvent at 65 °C. First‐order kinetic studies indicated that this polymerization proceeded in a “living”/controlled manner. The living nature of the polymerization was also confirmed by chain extension of methyl methacrylate with polyacrylonitrile (PAN) as macroinitiator. Furthermore, PAN was modified with NH2OH·HCl to generate amidoxime groups for extraction of heavy metal ions (Hg2+) from aqueous solutions. Fourier transformed infrared spectroscopy was performed to characterize chemical composition and structure. The adsorption property of Hg2+ was investigated at different pH values of aqueous solutions and distilled water. The maximal saturated adsorption capacity of Hg2+ was 4.8 mmol g?1. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

9.
A hypercrosslinked conjugated microporous polymer (HCMP‐1) with a robustly efficient absorption and highly specific sensitivity to mercury ions (Hg2+) is synthesized in a one‐step Friedel–Crafts alkylation of cost‐effective 2,4,6‐trichloro‐1,3,5‐triazine and dibenzofuran in 1,2‐dichloroethane. HCMP‐1 has a moderate Brunauer–Emmett–Teller specific surface (432 m2 g−1), but it displays a high adsorption affinity (604 mg g−1) and excellent trace efficiency for Hg2+. The π–π* electronic transition among the aromatic heterocyclic rings endows HCMP‐1 a strong fluorescent property and the fluorescence is obviously weakened after Hg2+ uptake, which makes the hypercrosslinked conjugated microporous polymer a promising fluorescent probe for Hg2+ detection, owning a super‐high sensitivity (detection limit 5 × 10−8 mol L−1).

  相似文献   


10.
Water‐soluble, meta‐ and para‐linked poly(arylene ethynylene)s containing L ‐aspartic acid‐functionalized fluorene units (P1 and P2) and their model compounds (M1 and M2) have been synthesized, and their photophysical properties and fluorescent sensing properties were investigated in aqueous solution. P1 and M1 with the meta‐linkage show blue‐shifted absorption and emission spectra, and decreased photoluminescence quantum yields compared with those of P2 and M2 with para‐linkage. Their absorption and fluorescence spectra are pH dependent perhaps due to the aggregation of the polymer chains at low pH values. In buffer solutions, both polymers and their model compounds exhibit the excellent selectivity and sensitivity to Hg2+ over other common metal ions. Furthermore, the quenching constant and detection limit of P1 are determined to be 1.04 × 107 M?1 and 10 nM, and show the higher sensitivity compared to P2. Further comparison of their model compounds reveal that the sensitivity and quenching efficiency of M1 is also higher than that of M2, indicating that the meta‐linkage pattern plays a key role in improving their Hg2+ ion sensing properties. In addition, both meta‐ and para‐linked polymers exhibit the higher quenching efficiency than their model compounds due to the amplified fluorescence response of conjugated polymer. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

11.
In this article, a soluble poly[2‐methoxy‐5‐(3′‐methyl)butoxy]‐p‐phenylene vinylene (MMB‐PPV) was synthesized by dehydrochlorination reaction and the MMB‐PPV film was implanted by nitrogen ions (N+) with the ion dose and energy in the range of 3.8 × 1015 to 9.6 × 1016 ions/cm2 and 15–35 keV, respectively. The surface conductivity, optical absorption, optical band gap (Eg) of modified MMB‐PPV film were studied, and the third‐order nonlinear optical susceptibility (χ(3)) as well as its environmental stability of modified MMB‐PPV film were also measured by degenerate four‐wave mixing system. The results showed that the surface conductivity of MMB‐PPV film was up to 3.2 × 10?2 S when ion implantation was performed with the energy of 35 keV at an ion dose of 9.6 × 1016 ions/cm2, which was seven order of magnitude higher than that of the pristine film. UV‐Vis absorption spectra demonstrated that the optical absorption of MMB‐PPV film was enhanced gradually in the visible region followed by a red shift of optical absorption threshold and the Eg value was reduced from 2.12 eV to 1.59 eV with the increase of ion dose and energy. The maximum χ(3) value of 2.45 × 10?8 esu for modified MMB‐PPV film was obtained with the ion energy of 20 keV at an ion dose of 3.8 × 1016 ions/cm2, which was almost 33 times larger than that for pristine film. In comparison to the reduction of 17% in the χ(3) value of pristine MMB‐PPV film, the maximum χ(3) value of 2.45 × 10?8 esu for modified MMB‐PPV film decreased by over 5.3% when they had been exposed under the same ambient conditions for 90 days. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 2072–2077, 2010  相似文献   

12.
High‐efficiency, mild‐conditioned tandem Knoevenagel–Michael reaction was utilized to post‐modify aldehyde‐containing, triphenylamine‐based precursor conjugated polymer ( CP1 ) to afford dimedone‐decorated aimed polymer ( CP2) . The chemical structure of CP2 was verified by FTIR and 1H NMR analyses. With the introduction of aqueous Hg2+, fluorescence of CP2 in THF‐water mixture (V THF/V water = 1/100) (buffered with 5 mM sodium dihydrogen phosphate‐disodium hydrogen phosphate (PB), pH = 7.4) altered significantly, with the emission changed from blue to orange. Besides this, CP2 also displayed specific optical response to ClO? in another probing medium (V THF/V water = 1/100, buffered with 50 mM PBS (with NaCl in PB, pH = 7.4). The detailed probing process and the plausible detection mechanism of CP2 to Hg2+ and ClO? were systematically investigated here. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55 , 1067–1076  相似文献   

13.
By using a copper‐promoted alkyne–azide cycloaddition reaction, two boron dipyrromethene (BODIPY) derivatives bearing a bis(1,2,3‐triazole)amino receptor at the meso position were prepared and characterized. For the analogue with two terminal triethylene glycol chains, the fluorescence emission at 509 nm responded selectively toward Hg2+ ions, which greatly increased the fluorescence quantum yield from 0.003 to 0.25 as a result of inhibition of the photoinduced electron transfer (PET) process. By introducing two additional rhodamine moieties at the termini, the resulting conjugate could also detect Hg2+ ions in a highly selective manner. Upon excitation at the BODIPY core, the fluorescence emission of rhodamine at 580 nm was observed and the intensity increased substantially upon addition of Hg2+ ions due to inhibition of the PET process followed by highly efficient fluorescence resonance energy transfer (FRET) from the BODIPY core to the rhodamine moieties. The Hg2+‐responsive fluorescence change of these two probes could be easily seen with the naked eye. The binding stoichiometry between the probes and Hg2+ ions in CH3CN was determined to be 1:2 by Job′s plot analysis and 1H NMR titration, and the binding constants were found to be (1.2±0.1)×1011 m ?2 and (1.3±0.3)×1010 m ?2, respectively. The overall results suggest that these two BODIPY derivatives can serve as highly selective fluorescent probes for Hg2+ ions. The rhodamine derivative makes use of a combined PET‐FRET sensing mechanism which can greatly increase the sensitivity of detection.  相似文献   

14.
Fluorene‐based polymer derivatives are promising materials for organic electronic devices because of their photoluminescence and electroluminescence, good film‐forming ability, and favorable chemical and thermal properties. Although optical properties of polyfluorene have already been reported, most of the studies focused on the linear optical properties, whereas nonlinear optical characteristics have only recently received more detailed attention. Here, we report on two polyfluorene derivatives, poly(9,9′‐n‐dihexyl‐2,7‐fluorenediyl) (LaPPS 10) and poly(9,9′‐n‐dihexyl‐2,7‐fluorene‐diyl‐vinylene) (LaPPS 38), which present intense nonlinear absorption and fluorescence. Two‐photon absorption cross‐section properties of both polymers were characterized in the spectral range from 500 nm up to 900 nm, reaching peak values around 2000 Göppert Mayer units. Optical limiting behavior and two‐photon‐induced fluorescence of both polymers have also been investigated. Furthermore, the first molecular hyperpolarizability of the polymers was also studied using hyper‐Rayleigh scattering. In addition, the three‐photon absorption (3PA) spectra of both materials were also investigated, and 3PA cross‐section values in the order of 1 × 10?78 cm6 s2 photon?2 were observed. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2014 , 52, 747–754  相似文献   

15.
We synthesized a Yb(III)‐incorporated microporous polymer (Yb‐ADA) and studied its gas adsorption property and catalytic activity. The adamantane‐based porous polymer (ADA) was obtained from an ethynyl‐functionalized adamantane derivative and 2,5‐dibromoterephthalic acid through Sonogashira–Hagihara cross‐coupling. ADA had two carboxyl groups which were used for Yb(III) coordination under basic conditions. The Brunauer‐Emmett‐Teller (BET) surface area of ADA was 970 m2 g?1. As Yb(III) ions were incorporated into ADA, the surface area of the polymer (Yb‐ADA) was reduced to 885 m2 g?1. However, Yb‐ADA exhibited a significantly enhanced CO2 adsorption capacity despite the reduction of surface area. The CO2 uptakes of ADA and Yb‐ADA were 1.56 and 2.36 mmol g?1 at 298 K, respectively. The H2 uptake of ADA also increased after coordination with Yb(III) from 1.15 to 1.40 wt % at 77 K. Yb‐ADA showed high catalytic activity in the acetalization of 4‐bromobenzaldehyde and furfural with trimethyl orthoformate and could be reused after recovery without severe loss of activity. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 5291–5297  相似文献   

16.
Based on our previous work on the sensitive and selective conjugated fluorescent polymeric sensors toward cyanide, 2,1,3‐benzothiadiazole and 4,7‐bis(thiophen‐2‐yl)‐2,1,3‐benzothiadiazole were incorporated into the polyfluorene backbone to yield three new polymers bearing imidazole moieties in the side chains, with different fluorescence color. The fluorescence could be turned off by Cu2+ ions and then recovered on addition of cyanide, making them good cyanide sensors with the detection limit down to 1.9 μM. Moreover, by fully understanding this “turn off–turn on” strategy and using the cooperation of two polymers with different fluorescence color, the emission color of the mixture system of one of the imidazole‐containing polymers and one from the corresponding polymers without imidazole ones, could be adjusted by the concentrations of the added copper and cyanide ions, leading to the output fluorescent signals diversity. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

17.
A series of novel, fluorene‐based conjugated copolymers, poly[(9,9‐bis{propenyl}‐9H‐fluorene)‐co‐(9,9‐dihexyl‐9H‐fluorene)] ( P1 ), poly[(9,9‐bis{carboxymethylsulfonyl‐propyl}fluorenyl‐2,7‐diyl)‐co‐(9,9‐dihexyl‐9H‐fluorene)] ( P2 ) and poly[(9,9‐dihexylfluorene)‐co‐alt‐(9,9‐bis‐(6‐azidohexyl)fluorene)] ( P3 ), are synthesized by Suzuki coupling reactions and their electrochemical properties, in the form of films, are investigated using cyclic voltammetry. The results reveal that the polymer films exhibit electrochromic properties with a pseudo‐reversible redox behavior; transparent in the neutral state and dark violet in the oxidized state. Among the three polymers, P2 possesses the shortest response time and the highest coloration efficiency value. These polymers emit blue light with a band gap value of around 2.9 eV and have high fluorescent quantum yields. Their metal ion sensory abilities are also investigated by titrating them with a number of different transition metal ions; all of these polymers exhibit a higher selectivity toward Fe3+ ions than the other ions tested with Stern–Volmer constants of 4.41 × 106M?1, 3.28 × 107M?1, 1.25 × 106M?1, and 6.56 × 106M?1 for P1 , P2 , water soluble version of P2 ( P2S ) and P3 , respectively. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

18.
A highly selective assay method has been developed to detect mercury (II) (Hg2+) ions using cationic conjugated polymer (CCP). The transduction mechanism is based on a Hg2+ promoted reaction. In the absence of Hg2+ ions, the CCP can form the complex with an anionic 1,3‐dithiole‐2‐thione derivative through electrostatic interactions. The fluorescence of CCP is efficiently quenched by 1,3‐dithiole‐2‐thione derivative via an electron transfer process. Upon adding Hg2+ ions, the transformation of 1,3‐dithiole‐2‐thione into 1,3‐dithiole‐2‐one inhibits the quenching, and the fluorescence of CCP is recovered. Distinguishing aspects of this assay include the signal amplification of CCPs and a specific Hg2+ promoted reaction. By triggering the change in the emission intensity of CCP, it is possible to detect Hg2+ ions in aqueous solution.

  相似文献   


19.
Amphiphilic hyperbranched copolymer chains made of large hyperbranched poly(acrylic acid) cores grafted with short polystyrene stickers (HB‐PAAng‐PSn + 1) with different n values (n = 1, 10, 47) were well prepared and confirmed by size exclusion chromatography, Fourier transform infrared spectroscopy and 1H nuclear magnetic resonance. The study on the interchain association behavior of these amphiphilic chains indicates that larger HB‐(PAA)ng‐(PS)n + 1 copolymer chains have a less tendency to undergo interchain association. Moreover, the simple vial‐inversion and rheological experiments show that the apparent critical gel concentration (Cg) decreases with n, but no sol–gel transition was observed for triblock PS‐PAA‐PS even when the concentration is up to 200 g L?1. Further transmission electron microscopy study of the latex particles prepared with HB‐(PAA)ng‐(PS)n + 1 as surfactant reveals that the latex particles are spherical and narrowly dispersed; while the measured latex particle number (Np) indicates the surfactant efficiency of HB‐(PAA)47g‐(PS)48 is poorer than that of triblock PS‐PAA‐PS (n = 1). Finally, pyrene solubilization measurement shows the solubilization efficiency of HB‐(PAA)ng‐(PS)n + 1 copolymers decreases with n, consistent with the previous observed interchain association result. The present study demonstrates that both the chain topology and the styrene weight fraction dominates the final solution properties of amphiphilic HB‐(PAA)ng‐(PS)n + 1 chains in aqueous solution. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 128–138  相似文献   

20.
The bifunctional comonomer 4‐(3‐butenyl) styrene was used to synthesize crosslinked polystyrene microspheres (c‐PS) with pendant butenyl groups on their surface via suspension copolymerization. Polyethylene chains were grafted onto the surface of c‐PS microspheres (PS‐g‐PE) via ethylene copolymerizing with the pendant butenyl group on the surface of the c‐PS microspheres under the catalysis of metallocene catalyst. The composition and morphology of the PS‐g‐PE microspheres were characterized by means of Fourier transform infrared spectroscopy, Fourier transform Raman spectroscopy, X‐ray photoelectron spectroscopy, and field‐emission scanning electron microscopy. It is possible to control the content of PE grafted onto the surface of c‐PS microspheres by varying the polymerization time or the initial quantity of pendant butenyl group on the surface of c‐PS microspheres. Investigation on the morphology and crystallization behavior of grafted PE chains showed that different surface patterns could be formed under various crystallization conditions. Moreover, the crystallization temperature of PE chains grafted on the surface of c‐PS microspheres was 6 °C higher than that of pure PE. The c‐PS microspheres decorated by PE chains had a better compatibility with PE matrix. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 4477–4486, 2007  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号