首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Thermal decomposition of four tertiary N‐(2‐methylpropyl)‐N‐(1‐diethylphosphono‐2,2‐dimethylpropyl)‐N‐oxyl (SG1)‐based alkoxyamines (SG1‐C(Me)2‐C(O)‐OR, R = Me, tBu, Et, H) has been studied at different experimental conditions using 1H and 31P NMR spectroscopies. This experiment represents the initiating step of methyl methacrylate polymerization. It has been shown that H‐transfer reaction occurs during the decomposition of three alkoxyamines in highly degassed solution, whereas no products of H‐transfer are detected during decomposition of SG1‐MAMA alkoxyamine. The value of the rate constant of H‐transfer for alkoxyamines 1 (SG1‐C(Me)2‐C(O)‐OMe) and 2 ( SG1‐C(Me)2‐C(O)‐OtBu) has been estimated as 1.7 × 103 M?1s?1. The high influence of oxygen on decomposition mechanism is found. In particular, in poorly degassed solutions, nearly quantitative formation of oxidation product has been observed, whereas at residual pressure of 10?5 mbar, the main products originate from H‐atom transfer reaction. The acidity of the reaction medium affects the decomposition mechanism suppressing the H‐atom transfer. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

2.
A number of well‐defined complex macromolecular architectures have been synthesized using an efficient macromonomer technique. Styrenic triple‐tailed polybutadiene (PBd) macromonomers (sTMMB), synthesized by selective reaction (titration) of living PBd tails with the SiCl groups of 2‐(dichloromethylsilyl)ethylchloromethylsilyl‐4‐styrene (TCDSS), were polymerized in situ without isolation of sTMMB with s‐BuLi, using high vacuum techniques. Taking advantage of the living character of the anionic polymerization of sTMMB, the following complex macromolecular architectures were prepared: PBd‐g‐(PBd)3 (triple‐combs), PS‐g‐(PBd)3 (triple‐grafts), [PBd‐g‐(PBd)3]3 (3‐arm triple‐comb stars), and triple molecular brushes (tmbPBd) or triple polymacromonomers (tPMMB). Characterization carried out by size exclusion chromatography (SEC), equipped with refractive index and light scattering detectors, indicated that the synthesized novel architectures have a high degree of molecular and compositional homogeneity. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 3513–3523, 2007  相似文献   

3.
Poly(vinyl alcohol)‐graft‐poly(1,4‐dioxan‐2‐one) (PVA‐g‐PPDO) with designed molecular structure was synthesized by a solid‐state polymerization. The solid‐state copolymerization was preceded by a graft copolymerization of PDO initiated with PVA as a multifunctional initiator, and Sn (Oct)2 as a coininitiator/catalyst in a homogeneous molten state. The polymerization temperature was then decreased and the copolymerization was carried out in a solid state. The products prepared by solid‐state polymerization were characterized by 1H NMR and DSC, and were compared with those synthesized in the homogeneous molten state. The degree of polymerization (Dp), degree of substitution (Ds), yield and the average molecular weight of the graft copolymer with different molecular structure were calculated from the 1H NMR spectra. The results show that the crystallization process during the solid‐state polymerization may suppress the undesirable inter‐ or intramolecular side reactions, then resulting in a controlled molecular structure of PVA‐g‐PPDO. The results of DSC measurement show that the molecular structures determine the thermal behavior of the PVA‐g‐PPDO. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 3083–3091, 2006  相似文献   

4.
A soluble 4H‐cyclopenta[2,1‐b ;3,4‐b ′]dithiophene‐4‐one (CPDTO)‐based polymer (C6‐PCPDTO) has been synthesized from two monomers derived from nonalkylated CPDTO and didodecyl CPDTO (C12‐CPDTO). Proton NMR, thermal analysis, UV–vis absorption, cyclic voltammetry, and XRD are used to characterize the polymer in solution and film. The new polymer has an optical bandgap of 1.28 eV in film, and has strong interchain interaction in chloroform solutions. The polymer contains a significant amount of homocoupled segments. The regular segments and homocoupled CPDTO segments render the polymer highly aggregating in solution. The non‐planar homocoupled C12‐CPDTO segments prevent the polymer from forming regular π‐stacks, resulting in a low SCLC hole mobility (3.88 × 10?7 cm2V?1s?1). CV experiments show that C6‐PCPDTO is stable in its oxidized and reduced states. Solar cell devices were fabricated from C6‐PCPDTO2 :PC60BM blends of different weight ratios. High PC60BM loading (80% or greater) was required for the devices to show measurable efficiency, indicating that the limited π‐stacking of the polymer is not sufficient to cause effective phase separation. Further development of synthetic method is still needed to eliminate structural defects so that long‐range ordered pi‐stacking can be realized in the polymer for these applications. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55 , 1077–1085  相似文献   

5.
Kinetics of the free radical polymerization of styrene at 110 °C has been investigated in the presence of C‐phenyl‐Ntert‐butylnitrone (PBN) and 2,2′‐azobis(isobutyronitrile) (AIBN) after prereaction in toluene at 85 °C. The effect of the prereaction time and the PBN/AIBN molar ratio on the in situ formation of nitroxides and alkoxyamines (at 85 °C), and ultimately on the control of the styrene polymerization at 110 °C, has been investigated. As a rule, the styrene radical polymerization is controlled, and the mechanism is one of the classical nitroxide‐mediated polymerization. Only one type of nitroxide (low‐molecular‐mass nitroxide) is formed whatever the prereaction conditions at 85 °C, and the equilibrium constant (K) between active and dormant species is 8.7 × 10?10 mol L?1 at 110 °C. At this temperature, the dissociation rate constant (kd) is 3.7 × 10?3 s?1, the recombination rate constant (kc) is 4.3 × 106 L mol?1 s?1, whereas the activation energy (Ea,diss.), for the dissociation of the alkoxyamine at the chain‐end is ~125 kJ mol?1. Importantly, the propagation rate at 110 °C, which does not change significantly with the prereaction time and the PBN/AIBN molar ratio at 85 °C, is higher than that for the thermal polymerization at 110 °C. This propagation rate directly depends on the equilibrium constant K and on the alkoxyamine and nitroxide concentrations, as well. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 1219–1235, 2007  相似文献   

6.
A series of poly(trimethylenecarbonate‐ε‐caprolactone)‐block‐poly(p‐dioxanone) copolymers were prepared with varying feed rations by using two step polymerization reactions. Poly(trimethylenecarbonate)(ε‐caprolactone) random copolymer was synthesized with stannous‐2‐ethylhexanoate and followed by adding p‐dioxanone monomer as the other block. The ring opening polymerization was carried out at high temperature and long reaction time to get high molecular weight polymers. The monofilament fibers were obtained using conventional melting spun methods. The copolymers were identified by 1H and 13C NMR spectroscopy and gel permeation chromatography (GPC). The physicochemical properties, such as viscosity, molecular weight, melting point, glass transition temperature, and crystallinity, were studied. The hydrolytic degradation of copolymers was studied in a phosphate buffer solution, pH = 7.2, 37 °C, and a biological absorbable test was performed in rats. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 2790–2799, 2005  相似文献   

7.
The living synthesis of poly(1,3‐cyclohexadiene) was performed with an initiator adduct that was synthesized from a 1:2 (mol/mol) mixture of N,N,N,N′‐tetramethylethylenediamine (TMEDA) and n‐butyllithium. This initiator, which was preformed at 65 °C, facilitated the synthesis of high‐molecular‐weight poly(1,3‐cyclohexadiene) (number‐average molecular weight = 50,000 g/mol) with a narrow molecular weight distribution (weight‐average molecular weight/number‐average molecular weight = 1.12). A plot of the kinetic chain length versus the time indicated that termination was minimized and chain transfer to the monomer was eliminated when a preformed initiator adduct was used. Chain transfer was determined to occur when the initiator was generated in situ. The polymerization was highly sensitive to both the temperature and the choice of tertiary diamine. The use of the bulky tertiary diamines sparteine and dipiperidinoethane resulted in poor polymerization control and reduced polymerization rates (7.0 × 10−5 s−1) in comparison with TMEDA‐mediated polymerizations (1.5 × 10−4 s−1). A series of poly(1,3‐cyclohexadiene‐block‐isoprene) diblock copolymers were synthesized to determine the molar crossover efficiency of the polymerization. Polymerizations performed at 25 °C exhibited improved molar crossover efficiencies (93%) versus polymerizations performed at 40 °C (80%). The improved crossover efficiency was attributed to the reduction of termination events at reduced polymerization temperatures. The microstructure of these polymers was determined with 1H NMR spectroscopy, and the relationship between the molecular weight and glass‐transition temperature at an infinite molecular weight was determined for polymers containing 70% 1,2‐addition (150 °C) and 80% 1,4‐addition (138 °C). © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 1216–1227, 2005  相似文献   

8.
The C‐phenyl‐Ntert‐butylnitrone/azobisisobutyronitrile pair is able to impart control to the radical polymerization of n‐butyl acrylate as long as a two‐step process is implemented, that is, the prereaction of the nitrone and the initiator in toluene at 85 °C for 4 h followed by the addition and polymerization of n‐butyl acrylate at 110 °C. The structure of the in situ formed nitroxide has been established from kinetic and electron spin resonance data. The key parameters (the dissociation rate constant, combination rate constant, and equilibrium constant) that govern the process have been evaluated. The equilibrium constant between the dormant and active species is close to 1.6 × 10?12 mol L?1 at 110 °C. The dissociation rate constant and the activation energy for the C? ON bond homolysis are 1.9 × 10?3 s?1 and 122 ± 15 kJ mol?1, respectively. The rate constant of recombination between the propagating radical and the nitroxide is as high as 1.2 × 109 L mol?1 s?1. Finally, well‐defined poly(n‐butyl acrylate)‐b‐polystyrene block copolymers have been successfully prepared. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 6299–6311, 2006  相似文献   

9.
D ,L ‐3‐Methylglycolide (MG) was synthesized via two step reactions with a good yield (42%). It was successfully polymerized in bulk with stannous octoate as a catalyst at 110 °C. The effects of the polymerization time and catalyst concentration on the molecular weight and monomer conversion were studied. Poly(D ,L ‐lactic acid‐co‐glycolic acid) (D ,L ‐PLGA50; 50/50 mol/mol) copolymers were successfully synthesized from the homopolymerization of MG with high polymerization rates and high monomer conversions under moderate polymerization conditions. 1H NMR spectroscopy indicated that the bulk ring‐opening polymerization of MG conformed to the coordination–insertion mechanism. 13C NMR spectra of D ,L ‐PLGA50 copolymers obtained under different experimental conditions revealed that the copolymers had alternating structures of lactyl and glycolyl. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 4179–4184, 2000  相似文献   

10.
A series of 2‐(1‐(2,4‐dibenzhydrylnaphthylimino)ethyl)‐6‐(1‐(arylimino)ethyl)pyridyliron(II) complexes ( Fe1 ? Fe5 ) was synthesized and characterized. The molecular structure of the representative Fe2 was determined by single‐crystal X‐ray diffraction, revealing a distorted pseudo‐square‐pyramidal geometry around the iron center. On activation with either methylaluminoxane (MAO) or modified methylaluminoxane (MMAO), all these iron complex precatalysts performed with high activities (up to 1.58 × 107 g (PE) mol?1 (Fe) h?1) toward ethylene polymerization, producing highly linear polyethylenes with high molecular weight and bimodal distribution, which was in accordance with high temperature 13C NMR, high T m values (T m ~130 °C) and the GPC curves of the obtained polyethylenes. Meanwhile, DFT calculation results also showed the good correlation between net charges on iron and experimental activities. Compared with previous bis(imino)pyridyliron analogues, the current iron complexes containing the benzhydrylnaphthyl groups exhibited relatively higher activities and better thermal‐stability at elevated temperatures, especially at 80 °C as the industrial operating temperature, and still showed high activities toward ethylene polymerization up to 8.57 × 106 g (PE) mol?1 (Fe) h?1 in the presence of co‐catalyst MMAO. In addition, these iron complex precatalysts all exhibited long lifetimes. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55 , 988–996  相似文献   

11.
Oligo(oxyethylene) chains cross‐linked 2,2’‐bithiophene (BT‐E5‐BT) has been synthesized successfully. A free‐standing copolymer film based on BT‐E5‐BT and 3,4‐ethylenedioxythiophene (P(BT‐E5‐BT‐co‐EDOT)) has been synthesized by electrochemical polymerization. The electrical conductivity of P(BT‐E5‐BT‐co‐EDOT) copolymer (16 S m?1) has improved by four orders of magnitude compared to the homopolymer of BT‐E5‐BT (P(BT‐E5‐BT), 5 × 10?3 S m?1) at room temperature. Both homopolymer and copolymer films exhibit well‐defined redox and satisfied coloration efficiency. Spectroelectrochemistry studies indicate that the P(BT‐E5‐BT‐co‐EDOT) has a lower band gap in the range of 1.83–1.90 eV and shows more plentiful electrochromic colours (green, blue, purple and salmon pink) compared with the homopolymer P(BT‐E5‐BT). The Copolymer P(BT‐E5‐BT‐co‐EDOT) shows the moderate optical contrast (26% of 480 nm) and coloration efficiency (205.41 cm?1 C?2). The copolymer method provides a novel way to fabricate a free‐standing organic electrochromic device. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 1583–1592  相似文献   

12.
The Cs‐symmetry hafnium metallocene [(p‐Et3Si)C6H4]2C(2,7‐di‐tert‐BuFlu)(C5H4)Hf(CH3)2 and tetrakis(pentafluorophenyl) borate dimethylanilinium salt ([B(C6F5)4]?[Me2NHPh]+) were used as the catalytic system for the polymerization of higher α‐olefins (from hexene‐1 to hexadecene‐1) in toluene at 0 °C. The evolution of the polymerization was studied regarding the variation of the molecular weight, molecular weight distribution and yield with time. The effect of the monomer structure on the polymerization kinetics was established. The role of trioctylaluminum in accelerating the polymerization was investigated. 13C NMR spectroscopy was used to study the microstructure of the poly(α‐olefins) by the determination of the pentad monomer sequences. The thermal properties of the polymers were obtained by differential scanning calorimetry, DSC. The results were discussed in connection with the polymer microstructure. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 4314–4325, 2009  相似文献   

13.
Oligomers and polymers containing triazole units were synthesized by the copper(I)‐catalyzed 1,3‐dipolar cycloaddition step‐growth polymerization of four difunctional azides and alkynes. In a first part, monofunctional benzyl azide was used as a chain terminator for the polyaddition of 1,6‐diazidohexane and α,ω‐bis(O‐propargyl)diethylene glycol, leading to polytriazole oligomers of controlled average degree of polymerization (DPn = 3–20), to perform kinetic studies on low‐viscosity compounds. The monitoring of the step‐growth click polymerization by 1H NMR at 25, 45, and 60 °C allowed the determination of the activation energy of this click chemistry promoted polyaddition process, that is, Ea = 45 ± 5 kJ/mol. The influence of the catalyst content (0.1–5 mol % of Cu(PPh3)3Br according to azide or alkyne functionalities) was also examined for polymerization kinetics performed at 60 °C. In a second part, four high molar mass polytriazoles were synthesized from stoichiometric combinations of diazide and dialkyne monomers above with p‐xylylene diazide and α,ω‐bis(O‐propargyl)bisphenol A. The resulting polymers were characterized by DSC, TGA, SEC, and 1H NMR. Solubility and thermal properties of the resulting polytriazoles were discussed based on the monomers chemical structure and thermal analyses. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 5506–5517, 2008  相似文献   

14.
Nontoxic and biodegradable poly(?‐caprolactone)‐b‐poly(ethylene glycol)‐b‐poly(?‐caprolactone) triblock copolymers were synthesized by the solution polymerization of ?‐caprolactone in the presence of poly(ethylene glycol). The chemical structure of the resulting triblock copolymer was characterized with 1H NMR and gel permeation chromatography. In aqueous solutions of the triblock copolymers, the micellization and sol–gel‐transition behaviors were investigated. The experimental results showed that the unimer‐to‐micelle transition did occur. In a sol–gel‐transition phase diagram obtained by the vial‐tilting method, the boundary curve shifted to the left, and the gel regions expanded with the increasing molecular weight of the poly(?‐caprolactone) block. In addition, the hydrodynamic diameters of the micelles were almost independent of the investigated temperature (25–55 °C). The atomic force microscopy results showed that spherical micelles formed at the copolymer concentration of 2.5 × 10?4 g/mL, whereas necklace‐like and worm‐like shapes were adopted when the concentration was 0.25 g/mL, which was high enough to form a gel. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 605–613, 2007  相似文献   

15.
A novel star‐shaped poly(p‐dioxanone) was synthesized by the ring‐opening polymerization of p‐dioxanone initiated by pentaerythritol with stannous octoate as a catalyst in bulk. The effect of the molar ratio of the monomer to the initiator on the polymerization was studied. The polymers were characterized with 1H NMR and 13C NMR spectroscopy. The thermal properties of the polymers were investigated with differential scanning calorimetry and thermogravimetric analysis. The novel star‐shaped poly(p‐dioxanone) has a potential use in biomedical materials. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 1245–1251, 2006  相似文献   

16.
The synthesis of poly(p‐phenylene methylene) (PPM)‐based block copolymers such as poly(p‐phenylene methylene)‐b‐poly(ε‐caprolactone) and poly(p‐phenylene methylene)‐b‐polytetrahydrofuran by mechanistic transformation was described. First, precursor PPM was synthesized by acid‐catalyzed polymerization of tribenzylborate at 16 °C. Then, this polymer was used as macroinitiators in either ring‐opening polymerization of ε‐caprolactone or cationic ring‐opening polymerization of tetrahydrofuran to yield respective block copolymers. The structures of the prepolymer and block copolymers were characterized by GPC and 1H NMR investigations. The composition of block copolymers as determined by 1H NMR and TGA analysis was found to be in very good agreement. The thermal behavior and surface morphology of the copolymers were also investigated, respectively, by differential scanning calorimetry and atomic force microscopy measurements, and the contribution of the major soft segment has been observed. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

17.
Cationic polymerization of tetrahydrofuran (THF) and epichlorohydrin (ECH) was performed with peroxy initiators synthesized from bis (4,4′‐bromomethyl benzoyl peroxide (BBP) or bromomethyl benzoyl t‐butyl peroxy ester (t‐BuBP) and AgSbF6 or ZnCl2 system at 0 °C to obtain the poly(THF‐b‐ECH) macromonomeric peroxy initiators. Kinetic studies were accomplished for poly(THF‐b‐ECH) initiators. Poly(THF‐b‐ECH‐b‐MMA) and poly(THF‐b‐ECH‐b‐S) block copolymers were synthesized by bulk polymerization of methyl methacrylate (MMA) and styrene (S) with poly(THF‐b‐ECH) initiators. The quantum chemical calculations for the block copolymers, the initiating systems of the cationic polymerization of THF and ECH were achieved using HYPERCHEM 7.5 program. The optimized geometries of the polymers were investigated with the quantum chemical calculations. Poly(THF‐b‐ECH) initiators having peroxygen groups were used for graft copolymerization of polybutadien (PBd) to obtain poly(THF‐b‐ECH‐g‐PBd) crosslinked graft copolymers. The graft copolymers were investigated by sol‐gel analysis. Swelling ratio values of the graft copolymers in CHCl3 were calculated. The characterizations of the polymers were achieved by FTIR, 1H NMR, GPC, SEM, TEM, and DSC techniques. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 2896–2909, 2010  相似文献   

18.
New amorphous semiconducting copolymers, poly(9,9‐dialkylfluorene)‐alt‐(3‐dodecylthienyl‐divinylbenzene‐3‐dodecylthienyl) derivatives (PEFTVB and POFTVB), were designed, synthesized, and characterized. The structure of copolymers was confirmed by H NMR, IR, and elemental analysis. The copolymers showed very good solubility in organic solvents and high thermal stability with high Tg of 178–185 °C. The weight average molecular weight was found to be 107,900 with polydispersity of 3.14 for PEFTVB and 76,700 with that of 3.31 for POFTVB. UV–vis absorption studies showed the maximum absorption at 428 nm (in solution) and 435 nm (in film) for PEFTVB and at 430 nm (in solution) and 436 nm (in film) for POFTVB. Photoluminescence studies showed the emission at 498 nm (in solution) and 557 nm (in film) for PEFTVB and at 498 nm (in solution) and 536 nm (in film) for POFTVB. The solution‐processed thin‐film transistors showed the carrier mobility of 2 × 10?4 cm2 V?1 s?1 for PEFTVB‐based devices and 2 × 10?5 cm2 V?1 s?1 for POFTVB‐based devices. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 3942–3949, 2010  相似文献   

19.
The synthesis of 3‐allyloxymethyl‐3‐ethyloxetane (AllylEHO) and its polymerization with BF3 × Et2O is described in this study. Size exclusion chromatography (SEC) and membrane osmometry are used for the determination of molecular weights of the obtained products, ranging from Mn,SEC = 41,500‐131,500 g/mol. 1H NMR spectroscopy, SEC, as well as MALDI‐TOF MS reveal the formation of cyclic tetramer beside low, but detectable concentrations of larger cyclic oligomers as by‐products during the polymerization process. These results help to understand mechanistically why attempts for a controlled homopolymerization of AllylEHO fail and why a controlled homopolymerization of oxetanes has not been described so far in the literature. Additionally, the high versatility of allyl‐functional polyoxetane for postpolymerization modification is proven by thiol–ene reactions with 3‐mercaptopropionic acid and N‐acetyl‐L ‐cysteine methyl ester. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

20.
Polymerization kinetics at several temperatures of 2‐ethoxyethyl methacrylate (EEMA) and 2(2‐ethoxyethoxy) ethyl methacrylate (DEMA) in bulk and in dioxane solutions are described. The gel effect was never detected at monomer concentrations equal to or lower than 1 mol L?1, although in the bulk polymerization both monomers display the gel effect at very low conversions. Because of the influence of the efficiency factor f on the polymerization rate, a theoretical kinetic interpretation of the changes in f with monomer and initiator concentrations and kinetic parameters was performed to achieve a better understanding of the mechanisms involved in radical polymerization. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 3987–4001, 2002  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号