首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Novel modifications of the synthetic polymer poly(vinyl alcohol) (PVA) were developed for application in the field of biomedical engineering. PVA was modified with allyl succinic anhydride, norbornene anhydride as well as with γ‐thiobutyrolactone to produce macromers with reactive ene and thiol groups, respectively. Cytotoxicity studies have shown that the material exhibits almost no cell‐toxicity, when used in concentrations of 1 and 0.1 wt % for 24 h. The obtained macromers were photocrosslinked via thiol–ene chemistry. Storage stability of the macromer mixtures with different concentrations of pyrogallol as stabilizer were investigated. Photorheometry was employed to optimize mixtures concerning reactivity based on their thiol‐to‐ene ratio, photoinitiator concentration, and macromer content. The crosslinked hydrogels were studied concerning their swellability. To form hydrogels with cellular structure two‐photon‐polymerization (2PP) was employed. Processing windows for 2PP of selected mixtures were determined. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 2060–2070  相似文献   

2.
Monomers for radical photopolymerization based on vinyl esters (VEs) have recently been identified as suitable alternatives to (meth)acrylates on account of their low irritancy and cytotoxicity. The drawback of most VEs with abstractable hydrogens is their relatively low reactivity compared with (meth)acrylates. Within this article, we proved by photo‐differential scanning calorimetry measurements and real‐time Fourier transform infrared spectroscopy that the thiol‐ene concept is able to improve the photoreactivity of these VEs to a large extent to a level between those of acrylates and methacrylates. Other VEs have now a reactivity of at least the level of similar acrylates. Mechanical properties as determined by Dynamic Mechanical Analysis and Charpy impact tests showed significant toughening of these materials. Furthermore, we were able to confirm low toxicity of all components by osteoblast cell culture experiments. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

3.
The three organic two‐photon‐absorbing cycloalkanone chromophores 2,4‐bis[4‐(diethylamino)benzylidene]cyclobutanone, C26H32N2O ( I ), 2,5‐bis[4‐(diethylamino)benzylidene]cyclopentanone, C27H34N2O ( II ), and 2,6‐bis[4‐(diethylamino)benzylidene]cyclohexanone, C28H36N2O ( III ), were obtained by a reaction between 4‐(diethylamino)benzaldehyde and the corresponding cycloalkanone and were characterized by single‐crystal X‐ray diffraction studies, as well as density functional theory (DFT) quantum‐chemical calculations. Molecules of this series have three main fragments, i.e. central acceptor (A) and two terminal donors (D1 and D2) and represent examples of the D1–π–A–π–D2 molecular design. All three compounds crystallize with two crystallographically independent molecules in the asymmetric unit ( A and B ) and are distinguished by the conformations of both the molecular Et2N—C6H4—C=C—C(=O)—C=C—C6H4—NEt2 backbone (arcuate or linear) and the terminal diethylamino substituents (syn‐ or antiperiplanar to the plane of the molecule). The central four‐ and five‐membered rings in I and II are almost planar, and the six‐membered ring in III adopts a sofa conformation. In the crystals of I – III , the two independent molecules A and B form hydrogen‐bonded [ A … B ] dimers via intermolecular C—H…O hydrogen bonds. Furthermore, the [ A … B ] dimers in I are bound by intermolecular C—H…O hydrogen bonds into two‐tier puckered layers, whereas in the crystals of II and III , the [ A … B ] dimers are stacked along the c and a axes, respectively. Taking into account the decreasing steric strain upon expanding the central ring, compound I might be more efficient as a two‐photon absorption chromophore than compounds II and III , which corresponds to the results of spectroscopic studies.  相似文献   

4.
This report introduces a novel UV‐curing technology based on thiol–thiol coupling for polydisulfide network formation. Beginning with a model tris(3‐mercaptopropionate) trithiol monomer and xanthone propionic acid‐protected guanidine as photobase generator, a comprehensive characterization based on spectroscopic techniques supports the reaction of thiols into disulfides without side reactions. The best experimental conditions are described as regards to film thickness, irradiance, emission wavelength, and atmosphere composition. The results shed light on a step‐growth photopolymerization mechanism involving two steps: first, the formation of thiyl radicals by thiolate air oxidation or/and thiol photolysis, and second, their recombination into disulfide. By varying thiol functionality and structure, oligomer chain length and monomer/oligomer ratio, the network architecture can be finely tuned. The molecular mobility of the polydisulfide network is crucial to high thiol conversion rates and yields as revealed by 1H T2 NMR relaxation measurements. Ultimately, spatial control enables the formation of a photopatterned poly(disulfide) film, used as next‐generation high refractive index photoresist. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 117–128.  相似文献   

5.
Printing of high‐resolution three‐dimensional nanostructures utilizing two‐photon polymerization has gained significant attention recently. In particular, isopropyl thioxanthone (ITX) has been implemented as a photoinitiator due to its capability of initiating and depleting polymerization on demand, but new photoinitiating materials are still needed in order to reduce the power requirements for the high‐throughput creation of 3D structures. To address this point, a suite of new thioxanthone‐based photoinitiators were synthesized and characterized. Then two‐photon polymerization was performed using the most promising photoinitiating molecule. Importantly, one of the initiators, 2,7‐bis[(4‐(dimethylamino)phenyl ethynyl)‐9H‐thioxanthen‐9‐one] (BDAPT), showed a fivefold improvement in the writing threshold over the commonly used ITX molecule. To elucidate the fundamental mechanism, the excitation and inhibition behavior of the BDAPT molecule were evaluated using density functional theory (DFT) calculations, low‐temperature phosphorescence spectroscopy, ultra‐fast transient absorption spectroscopy, and the two‐photon Z‐scan spectroscopic technique. The improved polymerization threshold of this new photoinitiator presents a clear pathway for the modification of photoinitiators in 3D nanoprinting. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2019 , 57, 1462–1475  相似文献   

6.
Real‐time Fourier transform near‐infrared spectroscopy has been used to monitor monomer and water concentrations simultaneously during cationic vinyl ether photopolymerization. The use of near‐infrared peak area methods allows the water content to be conveniently and nondestructively determined in any monomer or polymer for which the water peak has previously been calibrated by gravimetric analysis. Although the shape of the absorption band due to absorbed water in a monomer changes with the quantity of water, the integrated intensity from about 5350 to 4900 cm?1 can be correlated directly to the water concentration, and this region is well removed from the vinyl‐based absorption at approximately 6190 cm?1. This approach provides a highly informative, dynamic technique for examining the influence of moisture on polymerization reactions. Significant differences have been observed in the effects of absorbed water on the cationic photopolymerization kinetics of vinyl ether monomers with or without an ? OH group. Along with the rapid consumption of water coupled to vinyl ether polymerization, acid‐catalyzed hydrolysis reactions have also been spectroscopically observed, giving rise to the formation of aldehyde groups. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 1985–1998, 2004  相似文献   

7.
Ester‐free silane and siloxane‐based thiol monomers were successfully synthesized and evaluated for application in thiol‐ene resins. Polymerization reaction rates, conversion, network properties as well as degradation experiments of those thiol monomers in combination with triallyl‐1,3,5‐triazine‐2,4,6(1H,3H,5H)‐trione (TATT) as ene component were performed and compared with formulations containing the commercially available mercaptopropionic ester‐based thiol pentaerythritol tetra‐3‐mercaptopropionate. Kinetic analysis revealed appropriate reaction rates and conversions reaching 90% and higher. Importantly, storage stability tests of those formulations clearly indicate the superiority of the synthesized mercaptans compared with pentaerythritol tetra‐3‐mercaptopropionate/TATT resins. Moreover, photocured samples containing silane‐based mercaptans provide higher glass transition temperatures and withstand water storage without a significant loss in their network properties. This behavior together with the observed excellent degradation resistance of photocured silane‐based thiol/TATT formulations make these multifunctional mercaptans interesting candidates for high‐performance applications, such as dental restoratives and automotive resins. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 418–424  相似文献   

8.
9.
Intrigued by the good performance of 1,5‐diphenylpenta‐1,4‐diyn‐3‐one ( DPD ) as photoinitiator for radical polymerization we prepared and investigated several donor substituted derivatives. UV‐Vis spectroscopy revealed a gradual red‐shift of λmax and higher extinction in the order of the donor capability. A methoxy‐substituted derivative ( O‐DPD ) exhibited significant photoinitiation activity in photo‐DSC experiments. Steady state photolysis experiments showed decreased decomposition rates with increasing donor capability. A dimethylamino derivative N‐DPD was even photostable under these conditions. Because of to the D‐π‐A‐π‐D system of these compounds two‐photon induced 3D photopolymerization experiments were performed and N‐DPD showed outstanding performance compared to often applied single photon initiators. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 3280–3291, 2007  相似文献   

10.
Several novel aromatic ketone‐based two‐photon initiators containing triple bonds and dialkylamino groups were synthesized and the structure‐activity relationships were evaluated. Branched alkyl chains were used at the terminal donor groups to improve the solubility in the multifunctional monomers. Because of the long conjugation length and good coplanarity, the evaluated initiators showed large two‐photon cross section values, while their fluorescence lifetimes and quantum yields strongly depend on the solvent polarity. All novel initiators exhibited high activity in terms of two‐photon‐induced microfabrication. This is especially true for fluorenone‐based derivatives, which displayed much broader processing windows than well‐known highly active initiators from the literature and commercially available initiators. While the new photoinitiators gave high reactivity in two‐photon‐induced photopolymerization at concentration as low as 0.1% wt, these compounds are surprisingly stable under one photon condition and nearly no photo initiation activity was found in classical photo DSC experiment. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

11.
Whispering gallery mode microresonators have been triggering considerable advances in science due to their ability to confine light within small dielectric volumes, which makes them suitable for a wide range of applications. Lithographic approaches have been the dominant technique for fabricating microresonators; however, they restrict the choice of materials due to their multistep processing nature. As an alternative, they report the direct laser fabrication of acrylic based hollow microcylinder resonators, via two‐photon polymerization, with good structural integrity and sidewall roughness of 1.5 nm, which make them promising candidates for photonic applications in the near‐infrared. Such polymeric microresonators exhibit finesse close to 103 and a quality factor of 1 105, a performance achieved without any additional processing step, which would restrict the choices of materials to be incorporated into the polymeric resonator. This advantage thereby broadens the widespread use of the polymeric microresonators, making them an excellent platform for lasing and nonlinear optics studies in the near‐infrared. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2017 , 55, 569–574  相似文献   

12.
The use of UV light to initiate emulsion polymerization processes is generally overlooked, whilst extensive literature exists on photocuring of monomer films. In this study, the unique potential of UV light to produce at ambient temperature polyacrylate latexes without initiator was exploited. Although radical initiators are utilized at low concentration, their cost, toxicity, and odor provide incentives for finding alternatives. Starting with concentrated (30 wt %) and low scattering acrylate miniemulsions (droplet diameter <100 nm), it was demonstrated that acrylate self‐initiation can promote an efficient and fast photopolymerization in micrometer‐scale reactor (spectrophotometric cell) and lab‐scale photoreactor. Herein, all kinetic, colloidal, and mechanistic aspects involved in the self‐initiation of acrylate miniemulsion were extensively examined to provide a complete picture. In particular, the effects of droplet size, initiating wavelength, optical path, and irradiance on the course of the polymerization were thoroughly discussed. A diradical self‐initiation pathway is the most likely mechanism. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 1843–1853  相似文献   

13.
A polymeric waveguide film was manufactured by spinning the materials on quartz substrate. Two‐photon‐initiated photopolymerization was carried out by tight‐focusing femtosecond laser pulses in the two‐mode planar waveguide. A typical index‐modulated grating of 2.5 × 2 mm areas without morphology was fabricated. The results show that peak‐to‐peak modulation depth of the surface profile of grating region was only about 7 nm. The diffraction efficiency (DE) of the grating with a spacing period 2 µm was 0.17% and the corresponding index modulation reached 5.7 × 10?3. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

14.
Cobalt‐mediated radical polymerizations (CMRPs) utilizing redox initiation are demonstrated to produce poly(vinyl ester) homopolymers derived from vinyl pivalate (VPv) and vinyl benzoate (VBz), and their block copolymers with vinyl acetate (VAc). Combining anhydrous Co(acac)2, lauroyl peroxide, citric acid trisodium salt, and VPv at 30 °C results in controlled polymerizations that yield homopolymers with Mn = 2.5–27 kg/mol with Mw/Mn = 1.20–1.30. Homopolymerizations of scrupulously purified VBz proceed with lower levels of control as evidenced by broader polydispersities over a range of molecular weights (Mn = 4–16 kg/mol; Mw/Mn = 1.34–1.65), which may be interpreted in terms of the decreased nucleophilicity of these less electron donating propagating polymer chain ends. Based on these results, we demonstrate that sequential CMRP reactions present a viable route to microphase separated poly(vinyl ester) block copolymers as shown by small‐angle X‐ray scattering analyses. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

15.
We report a novel crystalline supramolecular polybenzobisimidazole (SP‐PBBI) capable of providing a two‐dimensional polymer (2DSP‐PBBI) by liquid‐phase exfoliation. A regular arrangement of rigid rod‐like polybenzobisimidazole (PBBI) chains is achieved by interchain hydrogen bonding. Titration of 2DSP‐PBBI with cobalt chloride (CoCl2) using UV‐Vis spectroscopy demonstrates the presence of bidentate NO ligands on the PBBI backbone and NO–Co(II) complexation. Imaging analysis using atomic force microscopy (AFM) reveals the planar surface morphology of exfoliated 2DSP‐PBBI sheets with lateral dimensions of <1 μm and thickness of <30 nm. The size of the polymer crystal growth is tuned by employing condensation/precipitation polymerization under nonisothermal conditions. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 1095–1101  相似文献   

16.
The polymerization of vinyl methacrylate (VMA) allows the synthesis of polymers with pendant double bonds. When this polymerization was undertaken in the presence of 2‐cyanopropyl dithiobenzoate as reversible addition–fragmentation chain transfer agent, it led almost exclusively to vinylester functional sidegroups, which were available for further reactions. The vinylester functionality could not be functionalized using common thiol‐ene catalysts, but could be activated using Candida antarctica lipase B (CAL‐B) (Novozyme 435). The reaction between PVMA and various thiols in N, N‐dimethyl formamide in the presence of CAL‐B led exclusively to the formation of the anti‐Markovnikov product. The rate of reaction between PVMA and 1‐butanethiol was monitored using 1H NMR. The reaction was complete within 72 h. Similar results were obtained with other small‐sized thiols such as 2‐mercaptoethanol, 3‐mercaptopropionic acid, and 2‐(trimethylsilyl)ethanethiol, while more bulky thiols, such as secondary thiols, thiols with long alkyl chains, and sterically demanding thiols, such as mono(6‐deoxy‐6‐mercapto)‐β‐cyclodextrin, only led to lower conversions. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

17.
The liquid, ceramic precursor monomer VL20 was copolymerized with a thiol monomer in a traditional radical thiol‐ene photopolymerization. Polymerization occurred via addition of the thiol functional group to the vinyl silazane functional group in a 1:1 ratio consistent with a step‐growth polymerization. Gelation occurred at a high conversion of functional groups (70%) consistent with an average molecular weight and functionality of 560 and 1.7, respectively, for VL20 monomers. Initiatorless photopolymerization of the thiol‐VL20 system also occurred upon irradiation at either 365 or 254 nm. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 1752–1757, 2004  相似文献   

18.
Due to the longevity of the cationic active centers, cationic ring‐opening photopolymerization can continue after illumination ceases. In addition, substantial reactivity enhancement for epoxides is realized through copolymerization with oxetanes. Here, the separate reactions of epoxide and oxetane moieties were resolved during illumination and subsequent dark cure via real‐time Raman spectroscopy. Using oxetane additives, reactivity and conversion of 3,4‐epoxycyclohexylmethyl‐3′,4′‐epoxycyclohexane carboxylate (EEC) were improved during illumination and subsequent dark cure through modulation of the initial formulation viscosity and selection of the oxetane secondary functional groups. The largest enhancement in reactivity occurred with secondary groups comprising either aliphatic chains with their flexibility or hydroxyls with their chain‐transfer capacity. In contrast, oxetanes containing UV‐absorbing phenyl rings reduced the initiation efficiency, and difunctional oxetanes suppressed overall conversion through additional crosslinking. Although bulk conversion was directly related to initial formulation viscosity, the impact of the oxetane secondary functional groups was greater. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 1436–1445  相似文献   

19.
Gelatin‐based monomers were considered as suitable base component for the 3D structuring of potential bone replacement materials by stereolithographic techniques. Different methacrylate‐based gelatin derivatives were prepared, whereas a polyethylene glycol modified derivative GP4M turned out to have the highest tolerance toward other monomers. These are essential as they allow the tuning of the photoreactivity and the mechanical properties. Cell culture experiments with osteoblast‐ and endothelial‐like cells confirmed negligible cytotoxicity of these monomers. Finally, we were able to show the possibility of producing arbitrary cellular structures with these gelatin‐containing formulations using stereolithography. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2009  相似文献   

20.
To report a new polymerization reaction phenomenon, this article examines the polymerization of butyl vinyl ether and N‐vinylcarbazole in the presence of 2‐benzoxypentafluoropropene [CF2?C(CF3)OCOC6H5 or BPFP]. The homopolymer of butyl vinyl ether was produced in the presence of a catalytic amount of BPFP in high yields. N‐Vinylcarbazole, which is a monomer well‐known for producing its homopolymer under cationic polymerization conditions, also yielded its homopolymer in the presence of BPFP. It was concluded that some cationic species would be yielded by the addition of BPFP. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 908–910, 2007.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号