首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this present work, using density functional theory and time‐dependent density functional theory methods, we theoretically study the excited‐state hydrogen bonding dynamics and the excited state intramolecular proton transfer mechanism of a new 2‐phenanthro[9,10‐d]oxazol‐2‐yl‐phenol (2PYP) system. Via exploring the reduced density gradient versus sign(λ2(r))ρ(r), we affirm that the intramolecular hydrogen bond O1‐H2?N3 is formed in the ground state. Based on photoexcitation, comparing bond lengths, bond angles, and infrared vibrational spectra involved in hydrogen bond, we confirm that the hydrogen bond O1‐H2?N3 of 2PYP should be strengthened in the S1 state. Analyses about frontier molecular orbitals prove that charge redistribution of 2PYP facilitates excited state intramolecular proton transfer process. Via constructing potential energy curves and searching transition state structure, we clarify the excited state intramolecular proton transfer mechanism of 2PYP in detail, which may make contributions for the applications of such kinds of system in future.  相似文献   

2.
So far, coumarin dyes have been extensively studied with various means to understand their photophysical behaviors and photochemical properties. Here, our performing time‐dependent density functional theory calculation is aimed at exploring the excited‐state hydrogen bonding dynamics of coumarin 153 (C153) in protic ethanol (EtOH) solvent. The calculated results suggest that the excited‐state hydrogen bond C?O?H?O between C?O group and O?H group in the C153‐EtOH complex is strengthened, and the S0 → S1 transition of the complex corresponds to the highest occupied molecular orbital (HOMO) hopping to the lowest unoccupied molecular orbital (LUMO). The excited‐state hydrogen bond strengthening has been further confirmed by its larger binding energy in the S1 state than in the S0 state. In addition, because of the formation of the hydrogen bond C?O?H?O, a red shift of about 7 nm occurs in the electronic spectra of the C153‐EtOH complex, which is in good accordance with the experiment result. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

3.
The time‐dependent density functional theory (TDDFT) method has been performed to investigate the excited state and hydrogen bonding dynamics of a series of photoinduced hydrogen‐bonded complexes formed by (E)‐S‐(2‐aminopropyl) 3‐(4‐hydroxyphenyl)prop‐2‐enethioate with water molecules in vacuum. The ground state geometric optimizations and electronic transition energies as well as corresponding oscillator strengths of the low‐lying electronic excited states of the (E)‐S‐(2‐aminopropyl) 3‐(4‐hydroxyphenyl)prop‐2‐enethioate monomer and its hydrogen‐bonded complexes O1‐H2O, O2‐H2O, and O1O2‐(H2O)2 were calculated by the density functional theory and TDDFT methods, respectively. It is found that in the excited states S1 and S2, the intermolecular hydrogen bond formed with carbonyl oxygen is strengthened and induces an excitation energy redshift, whereas the hydrogen bond formed with phenolate oxygen is weakened and results in an excitation energy blueshift. This can be confirmed based on the excited state geometric optimizations by the TDDFT method. Furthermore, the frontier molecular orbital analysis reveals that the states with the maximum oscillator strength are mainly contributed by the orbital transition from the highest occupied molecular orbital to the lowest unoccupied molecular orbital. These states are of locally excited character, and they correspond to single‐bond isomerization while the double bond remains unchanged in vacuum.  相似文献   

4.
Spectroscopic studies on excited‐state proton transfer of a new chromophore 2‐(2′‐benzofuryl)‐3‐hydroxychromone (BFHC) have been reported recently. In the present work, based on the time‐dependent density functional theory (TD‐DFT), the excited‐state intramolecular proton transfer (ESIPT) of BFHC is investigated theoretically. The calculated primary bond lengths and angles involved in hydrogen bond demonstrate that the intramolecular hydrogen bond is strengthened. In addition, the phenomenon of hydrogen bond reinforce has also been testified based on infrared (IR) vibrational spectra as well as the calculated hydrogen bonding energies. Further, hydrogen bonding strengthening manifests the tendency of excited state proton transfer. Our calculated results reproduced absorbance and fluorescence emission spectra of experiment, which verifies that the TD‐DFT theory we used is reasonable and effective. The calculated Frontier Molecular Orbitals (MOs) further demonstrate that the excited state proton transfer is likely to occur. According to the calculated results of potential energy curves along O―H coordinate, the potential energy barrier of about 14.5 kcal/mol is discovered in the S0 state. However, a lower potential energy barrier of 5.4 kcal/mol is found in the S1 state, which demonstrates that the proton transfer process is more likely to happen in the S1 state than the S0 state. In other words, the proton transfer reaction can be facilitated based on the photo‐excitation effectively. Moreover, the phenomenon of fluorescence quenching could be explained based on the ESIPT mechanism. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

5.
We present a theoretical investigation about the excited state dynamical mechanism of 2‐(4′‐N,N‐dimethylaminophenyl)‐imidazo[4,5‐c]pyridine (DMAPIP‐c). Within the framework of density functional theory and time‐dependent density functional theory methods, we reasonably repeat the experimental electronic spectra, which further confirm the theoretical level used in this work is feasible. Given the best complex model, 3 methanol (MeOH) solvent molecules should be connected with DMAPIP‐c forming DMAPIP‐c‐MeOH complex in both ground state and excited state. Exploring the changes about bond lengths and bond angles involved in hydrogen bond wires, we find the O7‐H8···N9 one should be largely strengthened in the S1 state, which plays an important role in facilitating the excited state intermolecular proton transfer (ESIPT) process. In addition, the analyses about infrared vibrational spectra also confirm this conclusion. The redistribution about charges distinguished via frontier molecular orbitals based on the photoexcitation, we do find tendency of ESIPT reaction due to the most charges located around N9 atom in the lowest unoccupied molecular orbital. Based on constructing the potential energy curves of both S0 and S1 states, we not only confirm that the ESIPT process should firstly occur along with hydrogen bond wire O7‐H8···N9, but also find a low potential energy barrier 8.898 kcal/mol supports the ESIPT reaction in the S1 state forming DMAPIP‐c‐MeOH‐PT configuration. Subsequently, DMAPIP‐c‐MeOH‐PT could twist its dimethylamino moiety with a lower barrier 3.475 kcal/mol forming DMAPIP‐c‐MeOH‐PT‐TICT structure. Our work not only successfully explains previous experimental work but also paves the way for the further applications about DMAPIP‐c sensor in future.  相似文献   

6.
The photochemistry of suprofen (SPF) was investigated by femtosecond transient absorption (fs‐TA), resonance Raman (RR) and nanosecond time‐resolved resonance Raman (ns‐TR3) spectroscopic methods to gain additional information so as to better elucidate the possible photochemical reaction mechanism of suprofen in several different solvents. In neat acetonitrile (MeCN), the fs‐TA and ns‐TR3 experimental data indicated that the lowest lying excited singlet state S1 (nπ*) underwent an efficient intersystem crossing process (ISC) to the excited triplet state T3 (ππ*), followed by an internal conversion (IC) process to T1 (ππ*). In the aqueous solution, a triplet biradical species (3ETK‐1) was obtained as the product of a decarboxylation process from triplet suprofen anion (3SPF) and the reaction rate of the decarboxylation process was determined by the concentration of H2O. A protonation process for 3ETK‐1 leads to formation of a neutral species (3ETK‐3) that was directly observed by ns‐TR3 spectra, then this 3ETK‐3 species decayed via ISC process to generate final product. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

7.
The photophysics of 3‐methyl‐3‐pentene‐2‐one (3M3P2O) after excitation to the S2(ππ*) electronic state were studied using the resonance Raman spectroscopy and complete active space self‐consistent field (CASSCF) method calculations. The A‐band resonance Raman spectra were obtained in cyclohexane, acetonitrile, and methanol with excitation wavelengths in resonance with the first intense absorption band to probe the structural dynamics of 3M3P2O. The B3LYP‐TD/6‐31++G(d, p) computation was carried out to determine the relative A‐band resonance Raman intensities of the fundamental modes, and the result was used to reproduce the corresponding fundamental band intensities of the 223.1 nm resonance Raman spectrum and thus to examine whether the vibronic‐coupling existed in Franck‐Condon region or not. CASSCF calculations were carried out to determine the minimal singlet excitation energies of S1, FC, S1,min (nπ*), S2, FC, S2,min (ππ*), the transition energies of the conical intersection points Sn/Sπ, Sn/S0, and the optimized excited state geometries as well as the geometry structures of the conical intersection points. The A‐band short‐time structural dynamics and the corresponding decay dynamics of 3M3P2O were obtained by the analysis of the resonance Raman intensity pattern and CASSCF computations. It was revealed that the initial structural dynamics of 3M3P2O was towards the simultaneous C3=C4 and C2=O7 bond elongation, with the C3=C4 bond length lengthening greater at the very beginning, whereas the C2=O7 bond length changing greater at the later evolution time before reaching the CI(S2/S1) conical intersection point. The decay dynamics from S2(ππ*) to S1(nπ*) via S2(ππ*)/S1(nπ*) in singlet realm and from S1(nπ*) to T1(nπ*) via ISC[S1(nπ*)/T2(ππ*)/T1(nπ*)] in triplet realm are proposed. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

8.
The structures of 2‐substituted malonamides, YCH(CONR1R2)CONR3R4 (Y = Br, SO2Me, CONH2, COMe, and NO2) were investigated. When Y = Br, R1R2 = R3R4 = HEt; Y = SO2Me, R1–R4 = H and for Y = CONH2 or CONHPh, R1–R4 = Me, the structure in solution is that of the amide tautomer. X‐ray crystallography shows solid‐state amide structures for Y = SO2Me or CONH2, R1–R4 = H. Nitromalonamide displays an enol structure in the solid state with a strong hydrogen bond (OO distance = 2.3730 Å at 100 K) and d(OH) ≠ d(OH). An apparently symmetric enol was observed in solution, even in appreciable percentages in highly polar solvents such as DMSO‐d6, but Kenol values decrease on increasing the solvent polarity. The N,N′‐dimethyl derivative is less enolic. Acetylmalonamides display a mixture of enol on the acetyl group and amide in non‐polar solvents, and only the amide in DMSO‐d6. DFT calculations gave the following order of pKenol values for Y: H > CONH2 > COMe ≥ COMe (on acetyl) ≥ MeSO2 > CN > NO2 in the gas phase, CHCl3, and DMSO. The enol on the C?O group is preferred to the aci‐nitro compound, and the N? O? HO?C is less favored than the C?O? HO?C hydrogen bond. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

9.
In this work, based on the density functional theory and time‐dependent density functional theory methods, the properties of the 2 intramolecular hydrogen bonds (O1‐H2···N3 and O4‐H5···N6) of a new photochemical sensor 4‐(3‐(benzo[d]thiazol‐2‐yl)‐5‐tert‐butyl‐4‐hydroxybenzyl)‐2‐(benzo[d]thiazol‐2‐yl)‐6‐tert‐butyl phenol (Bis‐HPBT) have been investigated in detail. The calculated dominating bond lengths and bond angles about these 2 hydrogen bonds (O1‐H2···N3 and O4‐H5···N6) demonstrate that the intramolecular hydrogen bonds should be strengthened in the S1 state. In addition, the variations of hydrogen bonds of Bis‐HPBT have been also testified based on infrared vibrational spectra. Our theoretical results reproduced absorption and emission spectra of the experiment, which verifies that the theoretical level we used is reasonable and effective in this work. Further, hydrogen bonding strengthening manifests the tendency of excited state intramolecular proton transfer (ESIPT) process. Frontier molecular orbitals depict the nature of electronically excited state and support the ESIPT reaction. According to the calculated results of potential energy curves along stepwise and synergetic O1‐H2 and O4‐H5 coordinates, the potential energy barrier of approximately 1.399 kcal/mol is discovered in the S1 state, which supports the single ESIPT process along with 1 hydrogen bond of Bis‐HPBT. In other words, the proton transfer reaction can be facilitated based on the electronic excitation effectively. In turn, through the process of radiative transition, the proton‐transfer Bis‐HPBT‐SPT form regresses to the ground state with the fluorescence of 539 nm.  相似文献   

10.
In the present work, using density functional theory and time‐dependent density functional theory methods, we investigated and presented the excited‐state intramolecular proton transfer (ESIPT) mechanisms of a novel Compound 1 theoretically. Analyses of electrostatic potential surfaces and reduced density gradient (RDG) versus sign(λ2)ρ, we confirm the existence of intramolecular hydrogen bond O1‐H2···N3 for Compound 1 in the S0 state. Comparing the primary structural variations of Compound 1 involved in the intramolecular hydrogen bond, we find that O1‐H2···N3 should be strengthened in the S1 state, which may facilitate the ESIPT process. Concomitantly, infrared (IR) vibrational spectra analyses further verify the stability of hydrogen bond. In addition, the role of charge transfer interaction has been addressed under the frontier molecular orbitals, which depicts the nature of electronical excited state and supports the ESIPT reaction. The theoretically scanned and optimized potential energy curves according to variational O1‐H2 coordinate demonstrate that the proton transfer process should occur spontaneously in the S1 state. It further explains why the emission peak of Compound 1‐enol was not reported in previous experiment. This work not only presents the ESIPT mechanism of Compound 1 but also promotes the understanding of this kind of molecules for further applications in future.  相似文献   

11.
In the present work, we theoretical study the sensing mechanism of a new fluoride chemosensor (E)‐2‐(2‐(dimethylamino)ethyl)‐6‐(4‐hydroxystyryl)‐1H‐benzo[de]‐isoquinoline‐1,3(2H)‐dione (the abbreviation is NIM ). Based on density functional theory and time‐dependent density functional theory methods, the fluoride anion response mechanism has been confirmed via constructing potential energy curve. The exothermal deprotonation process along with the intermolecular hydrogen bond O–H···F reveals the uniqueness of detecting F?. After capturing hydrogen proton forming NIM‐A anion configuration, a new absorption peak around 655 nm appears in dimethyl sulfoxide solvent. In addition, the emission of NIM can be quenched when adding F? has been also confirmed. Due to the twisted intramolecular charge transfer character NIM‐A‐S 1 form, we further verify the experimental phenomenon. The theoretical electronic spectra (vertical excitation energies and fluorescence peak) reproduced previous experimental results (ACS Appl. Mater. Interfaces 2014, 6, 7996), which not only reveals the rationality of our theoretical level used in this work but also confirms the correctness of geometrical attribution. In view of the excitation process, the strong intramolecular charge transfer process of S0 → S1 transition explain the redshift of absorption peak for NIM with the addition of fluoride anion. This work presents a straightforward sensing mechanism (deprotonation process) of fluoride anion for the novel NIM chemosensor.  相似文献   

12.
In the present work, we investigate a new chromophore (ie, quercetin) (Simkovitch et al J Phys Chem B 119 [2015] 10244) about its complex excited‐state intramolecular proton transfer (ESIPT) process based on density functional theory and time‐dependent density functional theory methods. On the basis of the calculation of electron density ρ( r ) and Laplacian ?2ρ( r ) at the bond critical point using atoms‐in‐molecule theory, the intramolecular hydrogen bonds (O1‐H2?O5 and O3‐H4?O5) have been supported to be formed in the S0 state. Comparing the prime structural variations of quercetin involved in its 2 intramolecular hydrogen bonds, we find that these 2 hydrogen bonds should be strengthened in the S1 state, which is a fundamental precondition for facilitating the ESIPT process. Concomitantly, infrared vibrational spectra analysis further verifies this viewpoint. In good agreement with previous experimental spectra results, we find that quercetin reveals 2 kinds of excited‐state structures (quercetin* and quercetin‐PT1*) in the S1 state. Frontier molecular orbitals depict the nature of electronically excited state and support the ESIPT reaction. Our scanned potential energy curves according to variational O1‐H2 and O3‐H4 coordinates demonstrate that the proton transfer process should be more likely to occur in the S1 state via hydrogen bond wire O1‐H2?O5 rather than O3‐H4?O5 because of the lower potential energy barrier 2.3 kcal/mol. Our present work explains previous experimental result and makes up the deficiency of mechanism in previous experiment. In the end, we make a reasonable assignment for ESIPT process of quercetin.  相似文献   

13.
In this work, we mainly focus on the excited‐state intramolecular proton transfer mechanism of a new molecule 9,10‐dihydroxybenzo[h]quinoline (9‐10‐HBQ). Within the framework of density functional theory and time‐dependent density functional theory methods, we have theoretically investigated its excited‐state dynamical process and our theoretical results successfully reappeared previous experimental electronic spectra. The ultrafast excited‐state intramolecular proton transfer process occurs in the first excited state (S1 state) forming 9‐10‐HBQ‐PT1 structure without potential energy barrier along with hydrogen bond (O3–H4···N5). Then the second proton may transfer via another intramolecular hydrogen bonded wire (O1–H2···N3) with a moderate potential energy barrier (about 7.69 kcal/mol) in the S1 state forming 9‐10‐HBQ‐PT2 configuration. After completing excited‐state dynamical process, the molecule on the first excited electronic state would come back to the ground state. We not only clarify the excited‐state dynamical process for 9‐10‐HBQ but also put forward new predictions and successfully explain previous experimental results.  相似文献   

14.
The photochemistry of pivaloyl, benzoyl, 4‐phenylbenzoyl, and 2‐anthroyl azides has been studied using femtosecond (fs) time‐resolved infrared (TRIR) and UV–vis spectroscopy and interpreted with the aid of computational chemistry. Density functional theory calculations revealed a significant difference in the nature of the lowest singlet excited state for these carbonyl azides. The lowest singlet excited states (S1) of p‐phenylbenzoyl and 2‐anthroyl azides are (π,π*) in nature, while the pivaloyl and benzoyl azides S1 states involve (n,π*) excitations. Nevertheless, for all acyl azides studied here, a similar, and intense, IR band at about 2100 cm?1 has been detected in the ultrafast TRIR experiments following 270 nm excitation. These bands were shifted to lower energy by about 100 cm?1 relative to the N3 stretching mode for the ground states of these azides. These 2100 cm?1 vibrational bands were assigned to the S1 states of acyl azides in agreement with density functional theory calculations. The decay of the acyl azide S1 states was described by bi‐exponential functions. The fast component was attributed to the decay of the hot S1 state and the longer component to the decay of the thermally relaxed S1 state. A strong and broad transient absorption in the 350–650 nm spectral range was observed in the fs UV–vis experiments for p‐phenylbenzoyl and 2‐anthroyl azides. The carrier of this absorption also decayed bi‐exponentially, and the time constants were in excellent agreement with those found in the fs TRIR experiments. The slow component of the S1 state decay was found to be dependent on the solvent polarity. When the lifetime of the acyl azide S1 state is substantially longer than the time constant for vibrational cooling of nascent (hot) isocyanate, the correlation between the S1 decay and isocyanate formation was clear. The 270 nm excitation populates the Sn (n ≥ 2) states of these acyl azides. It was established that a hot nitrene is produced more efficiently from both the Sn and hot S1 states than from the relaxed S1 state of these acyl azides. Thus, time‐resolved study provides direct experimental evidence that the S1 state is the precursor of nitrene only when the S1 state is pumped directly and when the S1 state lifetime is longer than the time constant of vibrational cooling of the newborn nitrene. All of these results are consistent with the data obtained recently for 2‐napththoyl azide. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

15.
The time‐dependent density functional theory method was performed to investigate the excited‐state hydrogen‐bonding dynamics of N‐(2‐hydroxyethyl)‐1,8‐naphthalimide (2a) and N‐(3‐hydroxyethyl)‐1,8‐naphthalimide (3a) in methanol (meoh) solution. The ground and excited‐state geometry optimizations, electronic excitation energies, and corresponding oscillation strengths of the low‐lying electronically excited states for the complexes 2a + 2meoh and 3a + 2meoh as well as their monomers 2a and 3a were calculated by density functional theory and time‐dependent density functional theory methods, respectively. We demonstrated that the three intermolecular hydrogen bonds of 2a + 2meoh and 3a + 2meoh are strengthened after excitation to the S1 state, and thus induce electronic spectral redshift. Moreover, the electronic excitation energies of the hydrogen‐bonded complexes in S1 state are correspondingly decreased compared with those of their corresponding monomer 2a and 3a. In addition, the intramolecular charge transfer of the S1 state for complexes 2a + 2meoh and 3a + 2meoh were theoretically investigated by analysis of molecular orbital. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

16.
The time‐dependent density functional theory (TDDFT) method was performed to investigate the excited‐state hydrogen bonding dynamics of 4‐amino‐1,8‐naphthalimide (4ANI) as hydrogen bond acceptor in hydrogen donating methanol (MeOH) solvent. The ground‐state geometry optimizations, electronic transition energies and corresponding oscillation strengths of the low‐lying electronically excited states for the isolated 4ANi and hydrogen‐bonded 4ANi‐(MeOH)1,4 complexes were calculated by the DFT and TDDFT methods, respectively. We demonstrated that the intermolecular hydrogen bond C═O···H–O and N–H···O–H in the hydrogen‐bonded 4ANi‐(MeOH)1,4 is strengthened in the electronically excited state, because the electronic excitation energies of the hydrogen‐bonded complex are correspondingly decreased compared with that of the isolated 4ANi. The calculated results are consistent with the mechanism of the hydrogen bond strengthening in the electronically excited state, while contrast with mechanism of hydrogen bond cleavage. Furthermore, we believe that the transient hydrogen bond strengthening behavior in electronically excited state of fluorescent dye in hydrogen‐donating solvents exists in many other systems in solution. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

17.
Two position isomers of hydroxy‐methyl‐pyridine (3‐hydroxy‐2‐methyl‐pyridine and 2‐hydroxy‐3‐methyl‐pyridine) were studied theoretically at the BLYP level of theory in order to find mechanisms explaining the excited‐state deactivations of isomers through ring puckering and “ethylene‐like” conical intersections. The study aims also to clarify the mechanisms of the ground‐state proton transfers. Three conical intersections S0/S1 for each isomer were found, which are accessible through the 1ππ* excited states. In both isomers, there is a 1ππ* excited‐state reaction path, which leads, in a completely barrierless manner, to the one of the conical intersections S0/S1. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

18.
The σ–σ* transition of C–C bond in CnF2n+2 molecules was studied by deep UV resonance Raman spectroscopy. With the C–C σ bond selectively excited by the deep UV laser at 177.3 nm, the resonance Raman spectra of CnF2n+2 molecules were obtained on our home‐assembled deep UV Raman spectrograph. The Raman bands at 1299, 1380 and 2586 cm−1 due to the C–C skeletal stretching modes are evidently enhanced owing to the resonance Raman effect. Based on the resonance Raman spectra and theoretical calculation results, it is proposed that the electronic geometry of CnF2n+2 molecules at the σσ* excited state is displaced along the directions perpendicular and parallel to the C–C skeleton, and the excited C–C bond is not dissociative due to the delocalization of the excited electron in σ* orbital. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

19.
1,1,1‐Trichloro‐3‐(1‐phenethylamino‐ethylidene)‐pentane‐2,4‐dione is spectroscopically and structurally elucidated by means of linear‐polarized IR spectroscopy (IR‐LD) of oriented solids as a colloidal suspension in nematic liquid crystal. Structural information and IR‐spectroscopic assignment are supported by quantum chemical calculations at MP2 and B3LYP level of theory and 6‐311++G** basis set. The geometry is characterized with an inramolecular hydrogen bond of NHO?C with length of 2.526 Å and a NHO angle of 140.5(1)°. The NH? C(CH3)C?C? C?O(CH3) fragment is nearly flat with a maximal deviation of total planarity of 10.4°. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

20.
A theoretical study on the nature of hydrogen bond for formamide and its heavy complexes (CYHNH2···XH; Y?O, S, Se, Te; X?F, HO, NH2) was performed on the basis of density functional theory and the quantum chemistry analysis. Except for the CYHNH2···NH3 complexes, the substitution of O atom at formamide with less electronegative atoms (S, Se, and Te) is found to weaken the hydrogen bond (H‐bond). This substitution results in cyclic structure of hydrated and ammoniated formamide complexes by the formation of bifunctional H‐bonds (Y···H4X; X···H3C). Natural bond orbital analysis indicates that the H‐bond is weakened because of less charge transfer from a lone pair orbital of H‐bond acceptor to antibonding orbital of H‐bond donor. The quantum theory of atoms in molecules analysis reveals that the acyclic structure with single H‐bond stabilizes the complexes more than the cyclic structure formed by bifunctional H‐bonds. Natural energy decomposition analysis (NEDA) and block‐localized wavefunction energy decomposition (BLW‐ED) analyses show that the H‐bond stabilization energies of NEDA and BLW‐ED have good correlation with the dissociation energy of formamide complexes and charge transfer from donor to acceptor atom play an important role in H‐bonding. We have also studied the low‐lying electronic excited states (T1, T2, and S1) for CYHNH2···H2O complexes to explore the nature of H‐bond on the basis of electronegativity and found that NEDA also establishes a good correlation with relative electronic energy (with respect to their ground state) and H‐bond strength at their excited states. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号