首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cationic bulk polymerization of L ,L‐ lactide (LA) initiated by trifluromethanesulfonic acid [triflic acid (TfA)] has been studied. At temperatures 120–160 °C, polymerization proceeded to high conversion (>90% within ~8 h) giving polymers with Mn ~ 2 × 104 and relatively high dispersity. Thermogravimetric analysis of resulting polylactide (PLA) indicated that its thermal stability was considerably higher than the thermal stability of linear PLA of comparable molecular weight obtained with ROH/Sn(Oct)2 initiating system. Also hydrolytic stability of cationically prepared PLA was significantly higher than hydrolytic stability of linear PLA. Because thermal or hydrolytic degradation of PLA starting from end‐groups is considerably faster than random chain scission, both thermal and hydrolytic stability depend on molecular weight of the polymer. High thermal and hydrolytic stability, in spite of moderate molecular weight of cationically prepared PLA, indicate that the fraction of end‐groups is considerably lower than in linear PLA of comparable molecular weight. According to proposed mechanism of cationic LA polymerization growing macromolecules are fitted with terminal ? OH and ? C(O)OSO2CF3 end‐groups. The presence of those groups allows efficient end‐to‐end cyclization. Cyclic nature of resulting PLA explains its higher thermal and hydrolytic stability as compared with linear PLA. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 2650–2658, 2010  相似文献   

2.
Cationic copolymerization of L,L ‐lactide (LA) and ε‐caprolactone (CL) initiated by low molecular weight diols in the presence of acid catalyst gives corresponding copolyesters terminated at both ends with hydroxyl groups in practically quantitative yield. Copolymerization proceeds by Activated Monomer mechanism. LA is consumed preferentially and at the later stages of copolymerization the reaction mixture is enriched with CL. In spite of that, random distribution of both units is observed and end‐groups are mainly ? LA‐OH groups and not ? CL‐OH groups. This is explained by the fact that to reach high conversion of both comonomers the relatively long reaction times are required and at those conditions transesterification reaction becomes significant. Thus the microstructure of copolymers and the nature of the end‐groups is governed by transesterification rather then by the kinetics of comonomers incorporation. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 3090–3097, 2007  相似文献   

3.
The ring‐opening polymerization (ROP) of cyclic esters, such as ε‐caprolactone, 1,5‐dioxepan‐2‐one, and racemic lactide using the combination of 3‐phenyl‐1‐propanol as the initiator and triflimide (HNTf2) as the catalyst at room temperature with the [monomer]0/[initiator]0 ratio of 50/1 was investigated. The polymerizations homogeneously proceeded to afford poly(ε‐caprolactone) (PCL), poly(1,5‐dioxepan‐2‐one) (PDXO), and polylactide (PLA) with controlled molecular weights and narrow polydispersity indices. The molecular weight determined from an 1H NMR analysis (PCL, Mn,NMR = 5380; PDXO, Mn,NMR = 5820; PLA, Mn,NMR = 6490) showed good agreement with the calculated values. The 1H NMR and matrix‐assisted laser desorption ionization time‐of‐flight mass spectrometry analyses strongly indicated that the obtained compounds were the desired polyesters. The kinetic measurements confirmed the controlled/living nature for the HNTf2‐catalyzed ROP of cyclic esters. A series of functional alcohols, such as propargyl alcohol, 6‐azido‐1‐hexanol, N‐(2‐hydroxyethyl)maleimide, 5‐hexen‐1‐ol, and 2‐hydroxyethyl methacrylate, successfully produced end‐functionalized polyesters. In addition, poly(ethylene glycol)‐block‐polyester, poly(δ‐valerolactone)‐block‐poly(ε‐caprolactone), and poly(ε‐caprolactone)‐block‐polylactide were synthesized using the HNTf2‐catalyzed ROP. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 2455–2463  相似文献   

4.
The cationic homopolymerization and copolymerization of L,L ‐lactide and ε‐caprolactone in the presence of alcohol have been studied. The rate of homopolymerization of ε‐caprolactone is slightly higher than that of L,L ‐lactide. In the copolymerization, the reverse order of reactivities has been observed, and L,L ‐lactide is preferentially incorporated into the copolymer. Both the homopolymerization and copolymerization proceed by an activated monomer mechanism, and the molecular weights and dispersities are controlled {number‐average degree of polymerization = ([M]0 ? [M]t)/[I]0, where [M]0 is the initial monomer concentration, [M]t is the monomer concentration at time t, and [I]0 is the initial initiator concentration; weight‐average molecular weight/number‐average molecular weight ~1.1–1.3}. An analysis of 13C NMR spectra of the copolymers indicates that transesterification is slow in comparison with propagation, and the microstructure of the copolymers is governed by the relative reactivity of the comonomers. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 7071–7081, 2006  相似文献   

5.
Star‐shaped homo‐ and copolymers were synthesized in a controlled fashion using two different initiating systems. Homopolymers of ε‐caprolactone, L ‐lactide, and 1,5‐dioxepan‐2‐one were firstly polymerized using (I) a spirocyclic tin initiator and (II) stannous octoate (cocatalyst) together with pentaerythritol ethoxylate 15/4 EO/OH (coinitiator), to give polymers with identical core moieties. Our gained understanding of the versatile and controllable initiator systems kinetics, the transesterification reactions occurring, and the role which the reaction conditions play on the material outcome, made it possible to tailor the copolymer microstructure. Two strategies were used to successfully synthesize copolymers of different microstructures with the two initiator systems, i.e., a more multiblock‐ or a block‐structure. The correct choice of the monomer addition order enabled two distinct blocks to be created for the copolymers of poly(DXO‐co‐LLA) and poly(CL‐co‐LLA). In the case of poly(CL‐co‐DXO), multiblock copolymers were created using both systems whereas longer blocks were created with the spirocyclic tin initiator. © 2008 Wiley Periodicals, Inc. JPolym Sci Part A: Polym Chem 46: 1249–1264, 2008  相似文献   

6.
Cationic copolymerization of n‐butyl glycidyl ether (BGE) and 3‐isochromanone (ICM) was investigated using trifluoromethanesulfonic acid (TfOH) as an initiator at 100 °C. In the copolymerization, the reactive site of ICM with the propagating cation was completely different from that in its homopolymerization: in the former, the propagating cation reacted with the carbonyl oxygen of ICM, while in the latter, the propagating cation reacted with the aromatic ring of ICM. In spite of the potential of ICM to undergo the homopolymerization, in the present copolymerization, ICM was consumed smoothly only in the presence of epoxide. As a result, the copolymerization proceeded in a statistic manner to afford the corresponding copolymer bearing ICM‐derived ester linkages distributed in the main chain. Cationic copolymerization of bisphenol A‐diglycidyl ether and ICM was also performed to synthesize the corresponding networked polymer. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 4213–4220  相似文献   

7.
Seven magnesium complexes ( 1–7 ) were synthesized by reaction of new ( L 3 ‐H – L 5 ‐H ) and previously reported ketoimine pro‐ligands with dibutyl magnesium and were isolated in 59–70% yields. Complexes 1–7 were characterized fully and consisted of bis‐ligated homoleptic ketoiminates coordinated in distorted octahedral geometry around the magnesium centers. The complexes were investigated for their ability to initiate the ring opening polymerization (ROP) of l ‐lactide (L‐LA) to poly‐lactic acid (PLA) and ?‐caprolactone (?CL) to poly‐caprolactone in the presence of 4‐fluorophenol co‐catalyst. For L‐LA polymerization, complexes containing ligand electron‐donating groups ( 1–5 ) achieved >90% conversion in 2 h at 100 °C, while the presence of CF3 groups in 6 and 7 slowed or resulted in no PLA detected. With ?CL, ROP initiated with 1–7 resulted in lower percentage conversion with similar electronic effects. Moderate molecular weight PLA polymeric material (14.3–21.3 kDa) with low polydispersity index values (1.23–1.56) was obtained, and ROP appeared to be living in nature. Copolymerization of L‐LA and ?CL yielded block copolymers only from the sequential polymerization of ?CL followed by L‐LA and not the reverse sequence of monomers or the simultaneous presence of both monomers. Polymers and copolymers were characterized with NMR, gel permeation chromatography, and differential scanning calorimetry. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 , 57, 48–59  相似文献   

8.
9.
An array of branched poly(?‐caprolactone)s was successfully synthesized using an one‐pot inimer promoted ring‐opening multibranching copolymerization (ROCP) reaction. The biorenewable, commercially available yet unexploited comonomer and initiator 2‐hydroxy‐γ‐butyrolactone was chosen as the inimer to extend the use of 5‐membered lactones to branched structures and simultaneously avoiding the typical tedious work involved in the inimer preparation. Reactions were carried out both in bulk and in solution using stannous octoate (Sn(Oct)2) as the catalyst. Polymerizations with inimer equivalents varying from 0.01 to 0.2 were conducted which resulted in polymers with a degree of branching ranging from 0.049 to 0.124. Detailed ROCP kinetics of different inimer systems were compared to illustrate the branch formation mechanism. The resulting polymer structures were confirmed by 1H, 13C, and 1H‐13C HSQC NMR and SEC (RI detector and triple detectors). The thermal properties of polymers with different degree of branching were investigated by DSC, confirming the branch formation. Through this work, we have extended the current use of the non‐homopolymerizable γ‐butyrolactone to the branched polymers and thoroughly examined its behaviors in ROCP. © 2016 The Authors. Journal of Polymer Science Part A: Polymer Chemistry Published by Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 1908–1918  相似文献   

10.
Ring‐opening polymerization (ROP) of (L,L)‐lactide (LA) has been initiated by dibutyltin dimethoxide in supercritical carbon dioxide (sc CO2). Polymerization is controlled and proceeds at quasi the same rate as in toluene, which indicates that the reactivity of the propagating species is not impaired by parasitic carbonation reaction. Random copolymerization of LA with ?‐caprolactone (CL) has also been studied in sc CO2, and the reactivity ratios have been determined as 5.8 ± 0.5 for LA and 0.7 ± 0.25 for CL. These values have to be compared to 0.7 ± 0.25 for LA and 0.15 ± 0.05 for CL in toluene. Good control on ROP of CL and LA in sc CO2 has been confirmed by the successful synthesis of diblock copolymers by sequential polymerization of CL and LA. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 2777‐2789, 2005  相似文献   

11.
The homopolymerization reactions of several lactones, as well as the copolymerization reactions of DL‐lactide with these lactones were investigated using tridentate Schiff base aluminum complexes as the initiators. ε‐Caprolactone and δ‐valerolactone polymerized efficiently at room temperature to afford polyesters, whereas β‐butyrolactone only gave the corresponding oligomer. The copolymerization reactions of DL‐lactide with caprolactone and valerolactone yielded gradient block copolymers where the lactyl blocks formed crystalline stereoblocks as a consequence of the stereoselective polymerization of DL‐lactide in the presence of the aluminum complexes. These polymerization processes were highly controlled in nature, and block copolymerization where caprolactone copolymerized using poly(DL‐lactide)‐Al complex proceeded. The obtained gradient copolymer containing stereoblock lactyl blocks and caproyl blocks were analyzed using WAXD analysis to uncover existence of the crystalline stereoblock lactyl blocks in the copolymer. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 2536–2544  相似文献   

12.
Divalent samarocene complex [(C5H9C5H4)2Sm(tetrahydrofuran)2] was prepared and characterized and used to catalyze the ring‐opening polymerization of L ‐lactide (L‐LA) and copolymerization of L‐LA with caprolactone (CL). Several factors affecting monomer conversion and molecular weight of polymer, such as polymerization time, temperature, monomer/catalyst ratio, and solvent, were examined. The results indicated that polymerization was rapid, with monomer conversions reaching 100% within 1 h, and the conformation of L‐LA was retained. The structure of the block copolymer of CL/L‐LA was characterized by NMR and differential scanning calorimetry. The morphological changes during crystallization of poly(caprolactone) (PCL)‐b‐P(L‐LA) copolymer were monitored with real‐time hot‐stage atomic force microscopy (AFM). The effect of temperature on the morphological change and crystallization behavior of PCL‐b‐P(L‐LA) copolymer was demonstrated through AFM observation. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 2667–2675, 2003  相似文献   

13.
Anionic copolymerizations of 3,4‐dihydrocoumarin (DHCM) and a series of glycidyl ethers (n‐butyl glycidyl ether, tert‐butyl glycidyl ether, and allyl glycidyl ether) with 2‐ethyl‐4‐methylimidazole as an initiator proceeded in a 1:1 alternating manner to give the corresponding polyesters, whose structures were confirmed by spectroscopic analyses and reductive scission of the ester bonds in the main chain with lithium aluminum hydride, followed by detailed analyses of the resulting fragments. The polyester obtained by the copolymerization of DHCM and allyl glycidyl ether inherited the allyl groups in the side chain, whose applicability to chemical modifications of the polyester was successfully demonstrated by a platinum‐catalyzed hydrosilylation reaction. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 4092–4102, 2008  相似文献   

14.
Two ways to obtain aliphatic polyesters (PEs) from dimethylketene and acetaldehyde were investigated. On the one hand, a direct anionic copolymerization was carried out in toluene at ?60 °C. The resulting polymer was mainly composed of PE units. On the other hand, a two‐step process involving the synthesis of 3,3,4‐trimethyl‐2‐oxetanone by [2+2] cycloaddition, followed by its ring‐opening polymerization, with various initiators and solvents, led to the expected PE. Molecular weights up to 9000 g mol?1 (measured by nuclear magnetic resonance (NMR)), with narrow polydispersity around 1.2, were obtained. These polymers were found stable up to 274 °C under nitrogen and a broad and complex endothermic peak attributed to crystallinity was observed near 139 °C by differential scanning calorimetry (DSC). The crystallinity, measured by X‐ray diffraction, was close to 0.45. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

15.
A series of zinc silylamido complexes bearing non‐symmetric β ‐diketiminate ligands were synthesized and structurally characterized. Ring‐opening polymerization (ROP) of rac ‐lactide catalyzed by these zinc complexes afforded heterotactic polylactides at room temperature (P r = 0.79 ~ 0.83 in THF). The steric and electronic characteristics of the ancillary ligands showed significant influence on the polymerization performance of the corresponding zinc complexes. All these zinc complexes also showed moderate activities toward the polymerization of ε ‐caprolactone at ambient temperature in toluene, producing polycaprolactones (PCLs) with high molecular weights and moderate polydispersities. PCL‐b ‐PLLA copolymers could be obtained via three different copolymerization strategies (one‐pot polymerization, and sequential addition of the two monomers in either order) by adopting complex 6 as the initiator through the adjustment of reaction temperatures. The diblock nature of the copolymers was confirmed by 13C NMR spectroscopy and DSC analysis.  相似文献   

16.
A series of bicyclic bis(γ‐butyrolactone)s (BBL) bearing sulfide moiety 2 were readily synthesized from a precursor BBL bearing isopropenyl group 1. This efficient and versatile synthesis of 2 was achieved by a highly reliable radical addition reaction of thiols to the C‐C double bond in the isopropenyl group 2 underwent anionic copolymerization with glycidyl phenyl ether in a 1:1 alternating manner to give a series of the corresponding polyester 3, of which side chains inherited the sulfide group from 2. The glass transition temperatures (Tg) of 3 showed clear dependence on the flexibility of the sulfide side chains. The scope of this copolymerization system was further expanded by synthesizing a bifunctional BBL 4 from 1 with using hexanedithiol and performing its copolymerization with bisphenol A diglycidyl ether 5. The copolymerization gave the corresponding networked polymer in high yield. During the copolymerization, the volume expanding nature of the double ring‐opening reaction of 4 contributed to the efficient compensation of the intrinsic volume shrinkage of the ring‐opening of epoxide to achieve a shrinkage‐free curing system. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

17.
Aluminum‐based salen and salan complexes mediate the ring‐opening polymerization (ROP) of rac‐β‐butyrolactone (β‐BL), rac‐lactide, and ε‐caprolactone. Al‐salen and Al‐salan complexes exhibit excellent control over the ROP of rac‐β‐butyrolactone, yielding atactic poly(3‐hydroxybutyrate) (PHB) with narrow PDIs of <1.15 for Al‐salen and <1.05 for Al‐salan. Kinetic studies reveal pseudo‐first‐order polymerization kinetics and a linear relationship between molecular weight and percent conversion. These complexes also mediate the immortal ROP of rac‐β‐BL and rac‐lactide, through the addition of excess benzyl alcohol of up to 50 mol eq., with excellent control observed. A novel methyl/adamantyl‐substituted Al‐salen system further improves control over the ROP of rac‐lactide and rac‐β‐BL, yielding atactic PHB and highly isotactic poly(lactic acid) (Pm = 0.88). Control over the copolymerization of rac‐lactide and rac‐β‐BL was also achieved, yielding poly(lactic acid)‐co‐poly(3‐hydroxybutyrate) with narrow PDIs of <1.10. 1H NMR spectra of the copolymers indicate a strong bias for the insertion of rac‐lactide over rac‐β‐BL. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

18.
The cationic copolymerization of ε‐caprolactone with ethylene oxide (EO) under the conditions of activated monomer polymerization, that is, with a low‐molecular‐weight diol as an initiator and BF3 etherate as a catalyst, was studied. To ensure the uniform composition of the resulting copolymers (telechelic oligodiols), the copolymerization was conducted with incremental feeding of the EO comonomer, which was more reactive in the cationic process. 1H NMR analysis of samples isolated at different stages of the copolymerization indicated that the average composition of the copolymer was indeed nearly constant over the course of the copolymerization. Matrix‐assisted laser desorption/ionization time‐of‐flight spectra of the products revealed, however, that for the same degree of polymerization, macromolecules containing different numbers of EO units were present. The observed distribution was compared with the distribution simulated under the assumption that the probability of incorporating a given unit depended only on the feed composition (nearly constant during the copolymerization). With this assumption, a good agreement between the observed and simulated spectra was obtained. This indicated that, even when the optimum conditions for the formation of a uniform copolymer were created, the individual macromolecules differed in composition because of the statistical character of the copolymerization. The results of differential scanning calorimetry analysis were compatible with such a conclusion; two melting peaks appeared on differential scanning calorimetry curves when a sample was heated immediately after fast cooling, and this may indicate the presence of different types of crystallites. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 3788–3796, 2005  相似文献   

19.
We report the ring‐opening homopolymerization of α‐allyl(valerolactone), compound 2 , and its copolymerization with ε‐caprolactone and δ‐valerolactone using stannous(II) catalysis. Although the polymerization of substituted δ‐valerolactones has received little attention for the preparation of functional polyesters, we found that compound 2 may be incorporated in controllable amounts into copolymers with other lactones, or simply homopolymerized to give a highly functionalized, novel poly(valerolactone). The presence of the pendant allyl substituent had a substantial impact on the thermal properties of these materials relative to conventional polyesters prepared from lactones, and most of the polymers presented here are liquids at room temperature. Dihydroxylation of the pendant allyl groups gave polyesters with increased hydrophilicity that degraded more or less rapidly depending on their extent of functionality. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 1983–1990, 2002  相似文献   

20.
Ethylene glycol (EG) initiated, hydroxyl‐telechelic poly(L ‐lactide) (PLLA) was employed as a macroinitiator in the presence of a stannous octoate catalyst in the ring‐opening polymerization of 5‐methyl‐5‐benzyloxycarbonyl‐1,3‐dioxan‐2‐one (MBC) with the goal of creating A–B–A‐type block copolymers having polycarbonate outer blocks and a polyester center block. Because of transesterification reactions involving the PLLA block, multiblock copolymers of the A–(B–A)n–B–A type were actually obtained, where A is poly(5‐methyl‐5‐benzyloxycarbonyl‐1,3‐dioxan‐2‐one), B is PLLA, and n is greater than 0. 1H and 13C NMR spectroscopy of the product copolymers yielded evidence of the multiblock structure and provided the lactide sequence length. For a PLLA macroinitiator with a number‐average molecular weight of 2500 g/mol, the product block copolymer had an n value of 0.8 and an average lactide sequence length (consecutive C6H8O4 units uninterrupted by either an EG or MBC unit) of 6.1. For a PLLA macroinitiator with a number‐average molecular weight of 14,400 g/mol, n was 18, and the average lactide sequence length was 5.0. Additional evidence of the block copolymer architecture was revealed through the retention of PLLA crystallinity as measured by differential scanning calorimetry and wide‐angle X‐ray diffraction. Multiblock copolymers with PLLA crystallinity could be achieved only with isolated PLLA macroinitiators; sequential addition of MBC to high‐conversion L ‐lactide polymerizations resulted in excessive randomization, presumably because of residual L ‐lactide monomer. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 6817–6835, 2006  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号