首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Indium-filled skutterudites with nominal compositions of In x Co4Sb12 (x=0,0.1,0.2,0.3) were prepared by combining solvothermal synthesis and melting. The bulk samples were characterized by X-ray diffraction and scanning electron microscopy, respectively. The Seebeck coefficient, electrical conductivity, and thermal conductivity were measured from room temperature up to ∼773 K. Hall effect measurements were performed at room temperature. The thermoelectric properties of the samples were significantly influenced by filling In into CoSb3. The dimensionless thermoelectric figure of merit, ZT, increased with increasing temperature and reached a maximum value of ∼0.79 for In0.1Co4Sb12 at 573 K.  相似文献   

2.
Rectification properties of Au Schottky diodes were investigated in high‐temperature operation. These diodes were fabricated on a p‐type diamond single crystal using the vacuum‐ultraviolet light/ozone treatment. The ideality factor n of the Schottky diodes decreased monotonically with increasing measurement temperature whereas the Schottky barrier height ?b increased, and ?b reached 2.6 eV at 550 K with n of 1.1. Through high temperature heating at 870 K, the mean value of ?b at 300 K changed permanently from 2.2 eV to 1.1 eV. Decrease of ?b might originate from a dissolution of oxygen termination at the Au/diamond interface. (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

3.
Nanocomposites of n‐type thermoelectric Bi2Te2.7Se0.3 (BTS) and unoxidized graphene (UG) were prepared from the exfoliated BTS and UG nanoplatelets. Polycrystalline BTS ingots were exfoliated into nanoscoll‐type crystals by chemical exfoliation, and were re‐assembled with UG nanoplatelets. The composites were chemically reduced by hydrazine hydrate and sintered by a spark‐plasma‐sintering method. The thermoelectric properties of the sintered composites were evaluated and exhibited decreased carrier concentration and increased thermal conductivity due to the embedded graphene. The peak ZT values for the UG/BTS‐US and UG/BTS‐EX composites were ~0.8 at the UG concentration of 0.05 wt%. (© 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

4.
Bulk mechanical alloying (BMA) followed by hot pressing (HP) was used to prepare Mg2Si0.6Ge0.4 thermoelectric material with high densification. Starting from the elemental power mixture, the Mg2Si0.6Ge0.4 solid solution was solid‐state synthesized via BMA. In fact, the peaks for the cubic‐structured Mg2Si0.6Ge0.4 solid solution phase were detected after 300 cycles in BMA. The single phase of Mg2Si0.6Ge0.4 was synthesized at 600 cycles in BMA. Mg2Si0.6Ge0.4 showed p‐type semiconduction without doping. Effects of hot pressing conditions on thermoelectric properties were investigated. With increasing hot pressing temperature from 673 to 773 K and pressure from 500 MPa to 1 GPa, the electrical conductivity increased and the Seebeck coefficient decreased. The maximum figure of merit was obtained with the processing parameter of 600 cycles BMA and hot pressing at 773 K, 1 GPa for 1 h. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

5.
Spark Plasma Sintering (SPS) is used for the fabrication of wafers of n‐ and p‐type thermoelectric V2VI3 materials. The SPS process did not change the overall chemical composition. X‐ray diffraction analysis and the electron backscattered selected area diffraction prove the preferential orientation after the SPS procedure expecting anisotropic thermoelectric prop‐ erties. The mechanical properties of the SPS material are enormously enhanced, so that the fabrication of thin wafers with only 100 µm thickness suitable for the development of Peltier devices with high cooling power density will be possible. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

6.
Nonstoichiometric Ag8–xGeTe6 (x = 0, 0.01, 0.02, 0.04) compounds with complex crystal structure are demonstrated to exhibit very low thermal conductivities of <0.28 W/m K, comparable with the calculated theoretical minimum thermal conductivity κmin. Ag deficiency leads to the improved electrical properties and a maximum thermoelectric figure of merit ZT of 0.85 has been obtained at 623 K for Ag7.99GeTe6, about 30% increase compared to that of stoichiometric Ag8GeTe6. (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

7.
Complex metal oxides, such as e.g. perovskite‐type phases are developed as potential functional materials to improve the efficiency of thermoelectric converters. Among those, cobaltates with p‐type conductivity and n‐type manganates are considered for the realisation of a ceramic thermoelectric converter. Sintered pellets with the composition AMO3–δ (A = Ln, RE; M = Co, Mn, Ni, Ti) and “Ca3Co4O9 derivates” were synthesized and characterised concerning their thermoelectric properties in a broad temperature range. It was found that the Seebeck coefficient and the electrical conductivity do not depend on the dimensions of the crystallites, while the heat conductivity can be substantially lowered by decreasing the size of the crystalline domains in these systems. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

8.
High‐density polycrystalline samples (above 98% of the theoretical density) of Ag8GeTe6 were prepared by solid‐state reactions of Ag2Te, GeTe, and Te, followed by hot‐pressing. The thermoelectric properties were measured at temperatures ranging from room temperature to around 700 K. The thermal conductivity values were extremely low (0.25 Wm–1 K–1 at room temperature), and consequently Ag8GeTe6 exhibited a relatively high thermoelectric figure of merit, ZT = 0.48 at 703 K. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

9.
Maize‐like CoSb3 powders were obtained via the chemical alloying method. After the consolidation of the nanopowder using hot press, the CoSb3 compact shows a higher Seebeck coefficient and lower thermal conductivity. For the investigated CoSb3, a ZT of 0.15 at 673 K is shown. Though the achieved ZT does not reach the optimal value (0.17 to 0.18) for pure CoSb3, due to its lower electrical conductivity, the novel structure fabrication provides an interesting and promising approach to enhancing the thermoelectric performance. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

10.
In recent years Al2O3 has received tremendous interest in the photovoltaic community for the application as surface passivation layer for crystalline silicon. Especially p‐type c‐Si surfaces are very effectively passivated by Al2O3, including p‐type emitters, due to the high fixed negative charge in the Al2O3 film. In this Letter we show that Al2O3 prepared by plasma‐assisted atomic layer deposition (ALD) can actually provide a good level of surface passivation for highly doped n‐type emitters in the range of 10–100 Ω/sq with implied‐Voc values up to 680 mV. For n‐type emitters in the range of 100–200 Ω/sq the implied‐Voc drops to a value of 600 mV for a 200 Ω/sq emitter, indicating a decreased level of surface passivation. For even lighter doped n‐type surfaces the passivation quality increases again to implied‐Voc values well above 700 mV. Hence, the results presented here indicate that within a certain doping range, highly doped n‐ and p‐type surfaces can be passivated simultaneously by Al2O3. (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

11.
Alkaline-earth (AE) and rare-earth (RE) atoms are usually used as void fillers in the caged compound CoSb3 to improve the thermoelectric performance of the filled system. Polycrystalline single-filled Sr0.21Co4Sb12, double-filled Sr x Yb y Co4Sb12, and Sr x Ba y Co4Sb12 skutterudites have been synthesized. Rietveld structure refinement confirms that both Sr and Yb occupy the Sb-icosaedron voids in skutterudite frame work. In this paper, we report the high-temperature thermoelectric properties including electrical conductivity, Seebeck coefficient, and thermal conductivity. Double filling of the Sr–Yb combinations shows a stronger suppression on lattice thermal conductivity than that of Sr–Ba combination. Furthermore, the double-filled Sr x Yb y Co4Sb12 skutterudites exhibit a much higher power factor than the Sr-filled system. The maximum power factor for Sr0.22Yb0.03Co4Sb12.12 reaches 41 μW cm−1 K−2 at room temperature and 57.5 μW cm−1 K−2 at 850 K, respectively. The enhanced thermoelectric figures of merit are 1.32 for Sr x Yb y Co4Sb12 and 1.22 for Sr x Ba y Co4Sb12 at 850 K, respectively.  相似文献   

12.
This paper reports on the both possible applications of molybdenum oxide (MoOx) thin films in combination with hole or electron conducting CdTe. The high quality ohmic contancts and strongly rectifying photodiodes were prepared by the DC magnetron sputtering of MoOx thin films onto freshly cleaved p‐ and n‐type CdTe single crystal substrates. The analysis of DC and AC electrical properties of the MoOx/ p‐CdTe ohmic contact was carried out. The dominating current transport mechanisms through the MoOx/p‐CdTe heterojunction at forward and reverse bias were determined. The unoptimized heterojunction photodiode showed promising rectifying and photoelectrical characteristics for practical application in the photoconductive mode. (© 2016 WILEY‐VCH Verlag GmbH &Co. KGaA, Weinheim)  相似文献   

13.
In this work we present a Raman scattering study of a specific region of the morphotropic phase boundary (MPB) of the [Pb(Mg1/3Nb2/3)O3]1−x (PbTiO3)x relaxor system. We performed low‐temperature measurement for the x = 0.4 composition in the 20–300 K temperature range, and a detailed analysis of Raman spectra of x = 0.4 and x = 0.37 compositions at 180 K. The analysis of Raman spectra indicates a structural phase transition at around 170 K for x = 0.4. The comparison of Raman data from x = 0.4 and x = 0.37 compositions suggests different phases for these samples at 180 K. These results are in accordance with the tetragonal to monoclinic structural phase transition observed in the PMN–PT MPB and contribute to improve the knowledge of the MPB of this solid solution. Additionally, we have performed the lattice dynamics phonon calculation of the (1 − x) PMN–xPT relaxor in order to best understand its complex Raman spectral properties. The normal mode analyses (at q ∼ 0) were performed by considering tetragonal symmetry for the (1 − x) PMN–xPT system and using the rigid ion model and mean field approximation. Our calculated wavenumber values are in good agreement with experimental and calculated results reported for PbTiO3 thus providing a reliable assignment of the various Raman modes. The low wavenumber modes are interpreted as arising from a lifting of the degeneracy of the vibrational modes related to Mg, Nb and Ti sites. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

14.
The specific features of the variation in the thermoelectric figure-of merit Z for p-type bismuth- and antimony-chalcogenide-based solid solutions p-(Bi,Sb)2(Te,Se)3 have been analyzed with allowance made for the data amassed in the investigation of thermoelectric and galvanomagnetic properties. It has been shown that, in the samples with optimum carrier concentrations, the increase in Z in the multicomponent p-Bi2 − x Sb x Te3 − y Se y composition (x = 1.3, y = 0.06) in the temperature range 300–370 K is mediated by the high carrier mobility and the low lattice thermal conductivity. The higher effective mass of the density of states and the larger slope of the temperature dependence of the mobility as compared to the other compositions bring about an increase in Z in the p-Bi2 − x Sb x Te3 solid solution for x = 1.6 in the temperature range 370–550 K. The increase in the figure-of merit reached in the compositions under study stems also from the increasing contraction of constant-energy ellipsoids along the binary and bisector directions and from the change in the angle θ between the principal axes of the ellipsoids and the crystallographic axes.  相似文献   

15.
An effective passivation on the front side boron emitter is essential to utilize the full potential of solar cells fabricated on n‐type silicon. However, recent investigations have shown that it is more difficult to achieve a low surface recombination velocity on highly doped p‐type silicon than on n‐type silicon. Thus, the approach presented in this paper is to overcompensate the surface of the deep boron emitter locally by a shallow phosphorus diffusion. This inversion from p‐type to n‐type surface allows the use of standard technologies which are used for passivation of highly doped n‐type surfaces. Emitter saturation current densities (J0e) of 49 fA/cm2 have been reached with this approach on SiO2 passivated lifetime samples. On solar cells a certified conversion efficiency of 21.7% with an open‐circuit voltage (Voc) of 676 mV was achieved. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

16.
X‐ray diffraction (XRD) studies have shown that 2‐piperidyl‐5‐nitro‐6‐methylpyridine, C11H15N3O2, undergoes a structural phase transition at T = 240 K. The room temperature structure is tetragonal, space group I41/a, with the unit‐cell dimensions a = 13.993(2) and c = 23.585(5) Å. The pyridine ring takes trans conformation with respect to the piperidine unit. While pyridine is well ordered, the piperidine moiety shows apparent disorder resulting from a libration about the linking N C bond. The low‐temperature phase is monoclinic, space group I2/a. Contraction of the unit‐cell volume by 2.3% at 170 K enables the C H···O linkage between the molecules of the neighbouring stacks. As result, the asymmetric unit becomes bi‐molecular. The thermal librations of the piperidine and methyl groups become considerably reduced at 170 K and nearly fully reduced at about 100 K. The IR spectra and polarised Raman spectra agree with the X‐ray structure and confirm the disorder effect on the piperidine ring. The assignment of the bands observed was made on the basis of DFT chemical quantum calculations. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

17.
We reported the characteristics of p‐type tin‐oxide (SnO) thin film transistors (TFTs) upon illumination with visible light. Our p‐type TFT device using the SnO film as the active channel layer exhibits high sensitivity toward the blue‐light with a high light/dark read current ratio (Ilight/Idark) of 8.2 × 103 at a very low driven voltage of <3 V. Since sensing of blue‐light radiation is very critical to our eyes, the proposed p‐type SnO TFTs with high sensitivity toward the blue‐light show great potential for future blue‐light detection applications.

  相似文献   


18.
Cu2Ga4Te7 has recently been reported to have a relatively high thermoelectric (TE) figure of merit (ZT). However, the TE properties of Cu2In4Te7, which has the same defect zinc‐blende structure as Cu2Ga4Te7, have been hardly investigated. Here, we demonstrate that Cu2In4Te7 has relatively high ZT values that are similar to those of Cu2Ga4Te7. High‐density polycrystalline bulk samples of Cu2In4Te7 were prepared and their electrical resistivity (?), Seebeck coefficient (S), and thermal conductivity (κ) were measured. Cu2In4Te7 has a maximum ZT of 0.3 at 700 K, with ?, S, and κ values of 62.1 × 10–5 Ω m, 394 μV K–1, and 0.61 W m–1 K–1, respectively. (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

19.
A series of Al 2p, K 2p, O 1s and N 1s core‐level spectra have been used to characterize the interaction between potassium (K) and tris(8‐hydroxyquinoline) aluminium (Alq3) molecules in the K‐doped Alq3 layer. All core‐level spectra were tuned to be very surface sensitive in selecting various photon energies provided by the wide‐range beamline at the National Synchrotron Radiation Research Center, Taiwan. A critical K concentration (x = 2.4) exists in the K‐doped Alq3 layer, below which the K‐doped atoms generate a strained environment near the O and N atoms within 8‐quinolinoline ligands. This creates new O 1s and N 1s components on the lower binding‐energy side. Above the critical K coverage, the K‐doped atoms attach the O atoms in the Al—O—C bonds next to the phenoxide ring and replace Al—O—C bonds by forming K—O—C bonds. An Alq3 molecule is disassembled into Alq2 and Kq by bond cutting and bond formation. The Alq2 molecule can be further dissociated into Alq, or even Al, through subsequent formations of Kq.  相似文献   

20.
苏贤礼  唐新峰  李涵  邓书康 《物理学报》2008,57(10):6488-6493
用熔融退火结合放电等离子烧结(SPS)技术制备了具有不同Ga填充含量的GaxCo4Sb12方钴矿化合物,研究了不同Ga含量对其热电传输特性的影响规律. Rietveld结构解析表明,Ga占据晶体学2a空洞位置,Ga填充上限约为0.22,当Ga的名义组成x≤0.25时,样品的电导率、室温载流子浓度Np随Ga含量的增加而增加,Seebeck系数随Ga含量的增加而减小. 室温下霍尔测试表明,每一个Ga授予框架0.9个电子,比Ga的氧化价态Ga3+小得多. 由于Ga离子半径相对较小,致使Ga填充方钴矿化合物的热导率κ及晶格热导率κL较其他元素填充的方钴矿化合物低. 当x=0.22时对应的样品在300K时的热导率和晶格热导率分别为3.05Wm-1·K-1和 2.86Wm-1·K-1.在600K下Ga0.22Co4.0Sb12.0样品晶格热导率达到最小,为1.83Wm-1·K-1,最大热电优值Z,在560K处达1.31×10-3K-1. 关键词: skutterudite化合物 Ga原子填充 结构 热电性能  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号