首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A quantum chemical investigation on the reaction mechanism of CH3O2 with OH has been performed. Based on B3LYP and QCISD(T) calculations, seven possible singlet pathways and seven possible triplet pathways have been found. On the singlet potential energy surface (PES), the most favorable channel starts with a barrierless addition of O atom to CH3O2 leading to CH3OOOH and then the O? O bond dissociates to give out CH3O + HO2. On the triplet PES, the calculations indicate that the dominant products should be 3CH2O2 + H2O with an energy barrier of 29.95 kJ/mol. The results obtained in this work enrich the theoretical information of the title reaction and provide guidance for analogous atmospheric chemistry reactions. © 2015 Wiley Periodicals, Inc.  相似文献   

2.
Summary Two AlFe-PILC catalysts were prepared with different OH/metal ratio and applied in nitrous oxide (N2O) decomposition reactions. The 100% conversion of N2O with NH3into N2and H2O was achieved below 500oC with both applied catalysts. However, the activity of catalysts in direct conversion of N2O into N2and O2did not exceed 40 % below 500oC. In this reaction the activity of AlFe-PILC catalyst synthesized at higher OH/metal ratio (4) is higher compared to the activity of AlFe-PILC catalyst with OH/metal ratio (2). Free FeO·Fe2O3particles were registered in the AlFe-PILC catalyst with higher OH/metal ratio (4).  相似文献   

3.
用密度泛函理论B3LYP方法对煤炭燃烧过程中N2O的消除反应进行研究。选用6-311++G**和aug-cc-pVTZ基组,优化了反应通道上反应物、过渡态和产物的几何构型。预测了它们的热力学性质(总能量、焓、熵和吉布斯自由能)及其随温度的变化。预测N2O+CO反应的活化能为200 kJ·mol-1,与实验值193±8 kJ·mol-1较一致。计算了500~1 800 K 温度范围的反应速率常数。在N2O的分解中,N2O与H和CN自由基的反应为动力学优先进行的反应,其活化能为50~55 kJ·mol-1。在B3LYP/aug-cc-pVTZ level水平下,N2O+CN反应是热力学最有利的自发反应,其吉布斯自由能变化为-407 kJ·mol-1。  相似文献   

4.
《中国化学快报》2020,31(10):2712-2716
The heterogeneous reaction of SO2 on mineral dust surfaces is generally considered as an important chemical pathway for secondary sulfate formation in the troposphere. To this day, there are no reported studies that assess the impact of atmospheric CO2 in sulfate production on mineral dust surfaces. In this work, we investigate the impact of CO2 on SO2 uptake on dust proxy aluminum oxide particles using a diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS). CO2 is demonstrated to suppress the heterogeneous oxidation of SO2 on alpha-Al2O3. Compared to that measured in the CO2-free case, the uptake coefficient is decreased by nearly 57% when Al2O3 particles are exposed to the gas flow with atmospheric CO2 at a relative humidity (RH) of 25%. It is also found that there is a balance between the yield of active moiety −OH provided by Al(OH)3(CO)(OH)2 clusters and the loss of basic hydroxyl group on aluminum oxide surfaces blocked by CO2-derived (bi)carbonate species. This work, for the first time, reveals a negative effect of atmospheric CO2 on the sulfate formation, which potentially decreases solar-radiation scattering and further exacerbates global warming.  相似文献   

5.
应用密度泛函理论DFT/B3LYP对HO2+NO2反应进行了研究, 在B3LYP/6-311G**和CCSD(T)/6-311G**水平上计算了HO2自由基与NO2分子反应的单重态和三重态反应势能面, 计算结果表明, 单重态反应势能面中的直接氢抽提反应机理是此反应的主要反应通道, 即HO2自由基的氢原子转移到NO2分子的氮原子上形成产物P1 (HNO23O2), 另一个可能的反应通道是单重态反应势能面上HO2中的端位氧原子进攻NO2分子中的氮原子形成中间体1 (HOONO2), 接着中间体1 (HOONO2)经过氢转移形成产物P2 (trans-HONO+3O2), 以上两个反应通道都是放热反应通道, 分别放热90.14和132.52 kJ•mol-1.  相似文献   

6.
The reaction of CH3OH with the O2 on the triplet and singlet potential energy surfaces (PES) was carried out using the B3LYP, MP2, and CCSD(T)//B3LYP theoretical approaches in connection with the 6-311++G(3df–3pd) basis set. Three pre-reactive complexes, 1C1, 1C2, and 3C1, on the singlet and triplet PES were formed between methanol and molecular oxygen. From a variety of the complexes, seven types of products are obtained, of which four types are found to be thermodynamically stable. Results reveal that there exists one intersystem crossing between triplet and singlet PES. For P4 adduct that is the main and kinetically the most favorable product, the rate constants are calculated in the temperature range of 200–1,000 K in the reliable pathway.  相似文献   

7.
Cosmic siliceous dust grains are involved in the synthesis of H2 in the inter‐stellar medium. In this work, the dust grain siliceous surface is represented by a hydrogen Fe‐metalla‐silsesquioxane model of general formula: [Fe(H7Si7O12?n)(OH)n]+ (n=0,1,2) where Fe+ behaves like a single‐site heterogeneous catalyst grafted on a siliceous surface synthesizing H2 from H. A computational analysis is performed using two levels of theory (B3LYP‐D3BJ and MP2‐F12) to quantify the thermodynamic driving force of the reaction: [Fe‐T7H7]++4H→[Fe‐T7H7(OH)2]++H2. The general outcomes are: 1) H2 synthesis is thermodynamically strongly favored; 2) Fe‐H / Fe‐H2 barrier‐less formation potential; 3) chemisorbed H‐Fe leads to facile H2 synthesis at 20≤T≤100 K; 4) relative spin energetics and thermodynamic quantities between the B3LYP‐D3BJ and MP2‐F12 levels of theory are in qualitative agreement. The metalla‐silsesquioxane model shows how Fe+ fixed on a siliceous surface can potentially catalyze H2 formation in space.  相似文献   

8.
The reaction of N (2D) radical with NO2 molecule has been studied theoretically using density functional theory and ab initio quantum chemistry method. Singlet electronic state [N2O2] potential energy surfaces (PES) are calculated at the CCSD(T)/aug‐cc‐pVDZ//B3LYP/6‐311+G(d) + ZPE and G3B3 levels of theory. All the involved transition states for generation of (2NO) and (O2 + N2) lie much lower than the reactants. Thus, the novel reaction N + NO2 can proceed effectively even at low temperatures and it is expected to play a role in both combustion and interstellar processes. On the basis of the analysis of the kinetics of all pathways through which the reactions proceed, we expect that the competitive power of reaction pathways may vary with experimental conditions for the title reaction. © 2008 Wiley Periodicals, Inc. Int J Quantum Chem, 2008  相似文献   

9.
All species involved in the multi‐channel reaction of CH3O2 with HO2 have been investigated using density functional theory (DFT). The molecular geometries for various species are optimized employing the B3LYP method implementing the 6‐311++G** basis set. The relative energies of all species are calculated at the same level theory. The results show that there are two kinds of channels: singlet and triplet. The singlet channel involves four intermediates and six transition states. The triplet channel includes two intermediates and two transition states. There are four kinds of reaction products: CH3OOH + 1O2, CH3OH + O3, CH4 + 2O2, and CH3OOH + 3O2. The vibrational mode analysis is used to elucidate the relationships of the intermediates, the transition states, and the products. The extensive investigation shows that the reaction mechanism is reliable. © 2005 Wiley Periodicals, Inc. Int J Quantum Chem, 2006  相似文献   

10.
The product channels and mechanisms of the C2HC12+O2 reaction are investigated by step-scan time-resolved Fourier transform infrared emission spectroscopy and the G3MP2// B3LYP/6-311G(d,p) level of electronic structure calculations. Vibrationally excited products of HCI, CO, and CO2 are observed in the IR emission spectra and the product vibrational state distribution are determined which shows that HCI and CO are vibrationally excited with the nascent average vibrational energy estimated to be 59.8 and 51.8 kJ/mol respectively. In combination with the G3MP2//B3LYP/6-311G(d,p) calculations, the reaction mechanisms have been characterized and the energetically favorable reaction pathways have been suggested.  相似文献   

11.
The reactions of N2O with NO and OH radicals have been studied using ab initio molecular orbital theory. The energetics and molecular parameters, calculated by the modified Gaussian-2 method (G2M), have been used to compute the reaction rate constants on the basis of the TST and RRKM theories. The reaction N2O + NO → N2 + NO2 (1) was found to proceed by direct oxygen abstraction and to have a barrier of 47 kcal/mol. The theoretical rate constant, k1 = 8.74 × 10−19 × T2.23 exp (−23,292/T) cm3 molecule−1 s−1, is in close agreement with earlier estimates. The reaction of N2O with OH at low temperatures and atmospheric pressure is slow and dominated by association, resulting in the HONNO intermediate. The calculated rate constant for 300 K ≤ T ≤ 500 K is lower by a few orders than the upper limits previously reported in the literature. At temperatures higher than 1000 K, the N2O + OH reaction is dominated by the N2 + O2H channel, while the HNO + NO channel is slower by 2–3 orders of magnitude. The calculated rate constants at the temperature range of 1000–5000 K for N2O + OH → N2 + O2H (2A) and N2O + OH → HNO + NO (2B) are fitted by the following expressions: in units of cm3 molecule −1s−1. Both N2O + NO and N2O + OH reactions are confirmed to enhance, albeit inefficiently, the N2O decomposition by reducing its activation energy. © 1996 John Wiley & Sons, Inc.  相似文献   

12.
齐斌  晁余涛 《化学学报》2007,65(19):2117-2123
在6-311+G(2d,2p)水平下, 采用密度泛函理论(DFT)的B3LYP方法, 研究了Criegee 自由基CH2O2与H2O的反应. 结果表明反应存在三个通道: CH2O2+H2O®HOCH2OOH (R1); CH2O2+H2O®HCO+OH+H2O (R2); CH2O2+H2O®HCHO+H2O2 (R3), 各通道的势垒高度分别为43.35, 85.30和125.85 kJ/mol. 298 K下主反应通道(R1)的经典过渡态理论(TST)与变分过渡态理论(CVT)的速率常数kTSTkCVT均为2.47×10-17 cm3•molecule-1•s-1, 而经小曲率隧道效应模型(SCT)校正后的速率常数kCVT/SCT 5.22×10-17 cm3•molecule-1•s-1. 另外, 还给出了200~2000 K 温度范围内拟合得到的速率常数随温度变化的三参数Arrhenius方程.  相似文献   

13.
The elimination reaction of acrylonitrile from 2′-O-cyanoethylated nucleosides by Bu4NF was studied computationally. The transition structures for the reaction of 3-methoxypropionitrile with Me4NF were located at the MP2, B3LYP, and B3LYP-SCRF(Dipole) levels with 6-31 + G* basis set. The α-hydrogen of the cyano group was removed via a proton transfer from the α-carbon to the oxygen with a syn-periplanar arrangement rather than the deprotonation reaction with F?. In the presence of an excess amount of Me4NF, the activation energy decreased by the coordination of Me4N+ to the cyano group. The reaction of 3-methoxypropionitrile with Bu4NF and 2′-O-cyanoethylated uridine with Me4NF also occurred via a proton transfer mechanism with lower activation energies. The reactivity tendency corresponds to the amount of the negative charge on the oxygen atom and part of the reason for the faster elimination with F? rather than with DBU concerns entropy. The experimental results are well explained by these calculations.  相似文献   

14.
It was established by the DFT method in the B3LYP/6-311G-d,p approximation that the oxidation of dimethyl sulfide (Me2S) by peroxides (XOOH) can take place by two mechanisms depending on the nature of X. In the reaction of Me2S with hydrogen peroxide (X = H) the direct reagent is the HOOH molecule while in the reactions with monoperoxoborate [X = B(OH)3] and diperoxoborate [X = B(OH)2OOH] it is a reagent containing the “water oxide” fragment X—(+OH)—O.  相似文献   

15.
2‐Amino‐3‐hydroxypyridinium dioxido(pyridine‐2,6‐dicarboxylato‐κ3O2,N,O6)vanadate(V), (C5H7N2O)[V(C7H3NO4)O2] or [H(amino‐3‐OH‐py)][VO2(dipic)], (I), was prepared by the reaction of VCl3 with dipicolinic acid (dipicH2) and 2‐amino‐3‐hydroxypyridine (amino‐3‐OH‐py) in water. The compound was characterized by elemental analysis, IR spectroscopy and X‐ray structure analysis, and consists of an anionic [VO2(dipic)] complex and an H(amino‐3‐OH‐py)+ counter‐cation. The VV ion is five‐coordinated by one O,N,O′‐tridentate dipic dianionic ligand and by two oxide ligands. Thermal decomposition of (I) in the presence of polyethylene glycol led to the formation of nanoparticles of V2O5. Powder X‐ray diffraction (PXRD) and scanning electron microscopy (SEM) were used to characterize the structure and morphology of the synthesized powder.  相似文献   

16.
The mechanisms for the reaction of CH3SSCH3 with OH radical are investigated at the QCISD(T)/6‐311++G(d,p)//B3LYP/6‐311++G(d,p) level of theory. Five channels have been obtained and six transition state structures have been located for the title reaction. The initial association between CH3SSCH3 and OH, which forms two low‐energy adducts named as CH3S(OH)SCH3 (IM1 and IM2), is confirmed to be a barrierless process, The S? S bond rupture and H? S bond formation of IM1 lead to the products P1(CH3SH + CH3SO) with a barrier height of 40.00 kJ mol?1. The reaction energy of Path 1 is ?74.04 kJ mol?1. P1 is the most abundant in view of both thermodynamics and dynamics. In addition, IMs can lead to the products P2 (CH3S + CH3SOH), P3 (H2O + CH2S + CH3S), P4 (CH3 + CH3SSOH), and P5 (CH4 + CH3SSO) by addition‐elimination or hydrogen abstraction mechanism. All products are thermodynamically favorable except for P4 (CH3 + CH3SSOH). The reaction energies of Path 2, Path 3, Path 4, and Path 5 are ?28.42, ?46.90, 28.03, and ?89.47 kJ mol?1, respectively. Path 5 is the least favorable channel despite its largest exothermicity (?89.47 kJ mol?1) because this process must undergo two barriers of TS5 (109.0 kJ mol?1) and TS6 (25.49 kJ mol?1). Hopefully, the results presented in this study may provide helpful information on deep insight into the reaction mechanism. © 2009 Wiley Periodicals, Inc. Int J Quantum Chem, 2011  相似文献   

17.
FeIV=Oaq is a key intermediate in many advanced oxidation processes and probably in biological systems. It is usually referred to as FeIV=O2+. The pKa's of FeIV=Oaq as derived by DFT are: pKa1=2.37 M06 L/6-311++G(d,p) (SDD for Fe) and pKa2=7.79 M06 L/6-311++G(d,p) (SDD for Fe). This means that in neutral solutions, FeIV=Oaq is a mixture of (H2O)4(OH)FeIV=O+ and (H2O)2(OH)2FeIV=O. The oxidation potential of FeIV=Oaq in an acidic solution, E0{(H2O)5FeIV=O2+/FeIII(H2O)63+, pH 0.0} is calculated with and without a second solvation sphere and the recommended value is between 2.86 V (B3LYP/Def2-TZVP, with a second solvation sphere) and 2.23 V (M06 L/Def2-TZVP without a second solvation sphere). This means that FeIV=Oaq is the strongest oxidizing agent formed in systems involving FeVIO42− even in neutral media.  相似文献   

18.
Abstract

[Cu(en){B6O7(OH)6}].3H2O (1) (en = 1,2-diaminoethane), obtained as a crystalline solid in low yield (31%) after prolonged standing of an aqueous solution initially containing [Cu(en)2](OH)2 and B(OH)3 (1:7 ratio), was characterized by thermal analysis (TGA/DSC), 11B NMR and IR spectroscopy, powder XRD, and single-crystal XRD studies, and magnetic susceptibility measurements. The single-crystal X-ray diffraction revealed that the oxidoborate complex is a 1D coordination polymer with the hexaborate(2-) ligand bridging two hexacoordinate Cu(II) centers, in an alternating a fac-tridentate (κ3-O) and monodentate (κ1-O) arrangement. Cu-O coordination bonds and extensive H-bonding networks promote and stabilize the self-assembly of [Cu(en){B6O7(OH)6}].3H2O from the Dynamic Combinatorial Libraries of available reactants. [Cu(en){B6O7(OH)6}].3H2O is thermally decomposed to CuB6O10 in air at 700?°C.  相似文献   

19.
The salts, [Ph2B{OCH2CH2N(Me)(CH2)n}2][Ph4B3O3] (n = 4, 5), were prepared in moderate yields in MeOH solution from reaction of Ph2BOBPh2 with [N(CH2)n(Me)(CH2CH2OH)][OH] and PhB(OH)2 in a 1:2:4 ratio. The reactions also lead to Ph3B3O3. Both salts were characterized by NMR (1H, 13C, 11B) IR, and single-crystal XRD studies. The salts are comprised of cationic monoborates (zwitterionic, 2N+ and 1B) and tetraphenylboroxinate anions.  相似文献   

20.
[B4O5(OH)42−] is a representative borate anion with a double six-membered ring structure, but there is limited knowledge about the hydrolysis mechanisms of [B4O5(OH)42−]. Density functional theory-based calculations show that the tetraborate ion undergoes three-step hydrolysis to form [B(OH)4] and an ring intermediate, [B3O2(OH)6]. Other new structures, such as linear trimer, branched tetraborate, analogous linear tetraborate, are observed, but they are not stable in neutral systems and change to ring structures. [B3O2(OH)6] hydrolyzes to [B(OH)4] and [B(OH)3] in the last two steps. The structure of borate anion and the coordination environment of the bridge oxygen atom control the hydrolysis process. [B4O5(OH)42−] always participates in the hydrolysis reaction, even with a decrease in concentration. [B3O3(OH)4], [B(OH)4], and [B(OH)3] have different roles in “water-poor” and “water-rich” zones. Concentration and pH of solution are the key factors that affect the distribution of borate ions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号