首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Amphiphilic copolymers were obtained by grafting arborescent poly(γ‐benzyl l ‐glutamate) (PBG) cores of generations G1–G3 with polyglycidol, poly(ethylene oxide) (PEO), or poly(l ‐glutamic acid) (PGA) chain segments. The PBG substrates were synthesized by two methods: (1) subjecting PBG samples with a dispersity ? = Mw/Mn < 1.1 to partial acidolysis of the benzyl ester groups, to produce randomly distributed carboxylic acid functionalities, and (2) using PBG chains containing a glutamic acid di‐tert‐butyl ester initiator fragment in the last grafting cycle of the PBG core synthesis, and selective acidolysis of the tert‐butyl ester groups to obtain substrates with carboxylic acid termini. Linear polymers with ? < 1.20 and a primary amine terminus were also synthesized to serve as hydrophilic shell materials: Polyglycidol and PEO by anionic polymerization, and PGA by N‐carboxyanhydride ring‐opening polymerization. These polymers, combined with the two different PGB substrate types, allowed the evaluation of the usefulness of random versus chain‐end grafting in producing arborescent copolymers useful as unimolecular micelles in organic and aqueous media. Size exclusion chromatography served to determine the grafting yield, molar mass, dispersity, and branching functionality of the copolymers. Dynamic light scattering measurements provided information on their aggregation behavior in aqueous environments. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 1197–1209  相似文献   

2.
The synthesis of arborescent styrenic homopolymers and copolymers was achieved by anionic polymerization and grafting. Styrene and p‐(3‐butenyl)styrene were first copolymerized using sec‐butyllithium in toluene, to generate a linear copolymer with a weight‐average molecular weight Mw = 4000 and Mw/Mn = 1.05. The pendant double bonds of the copolymer were then epoxidized with m‐chloroperbenzoic acid. A comb‐branched (or arborescent generation G0) copolymer was obtained by coupling the epoxidized substrate with living styrene‐p‐(3‐butenyl)styrene copolymer chains with Mw ≈ 5000 in a toluene/tetrahydrofuran mixture. Further cycles of epoxidation and coupling reactions while maintaining Mw ≈ 5000 for the side chains yielded arborescent copolymers of generations G1–G3. A series of arborescent styrene homopolymers was also obtained by grafting Mw ≈ 5000 polystyrene side chains onto the linear and G0–G2 copolymer substrates. Size exclusion chromatography measurements showed that the graft polymers have low polydispersity indices (Mw/Mn = 1.02–1.15) and molecular weights increasing geometrically over successive generations. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

3.
A method was developed for the large (100 g) scale synthesis of arborescent polystyrenes using acetyl coupling sites. Successive generations of dendritic graft polymers were obtained from cycles of polystyrene substrate acetylation with acetyl chloride and coupling in the presence of LiCl with “living” polystyryllithium chains capped with 2‐vinylpyridine units. The grafting yield for the synthesis of a generation zero (G0 or comb‐branched) arborescent polystyrene under the conditions previously reported for the 10 g scale reactions decreased from 95 to 75% when scaled up to 100 g. The lowered yield was linked to side chain dimerization and deactivation of the macroanions. The modified 100 g scale procedure, using end‐capping of the polystyryllithium with 1,1‐diphenylethylene and the addition of 3–6 equivalents per living end of 2‐vinylpyridine as a dilute solution, eliminated side chain dimerization and provided grafting yields of up to 95%. The large‐scale procedure developed was applied to the synthesis of arborescent polystyrenes of generations up to G2 with low polydispersity indices (Mw/Mn ≤ 1.04) and molecular weights increasing in an approximately geometric fashion for each cycle. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 5742–5751, 2008  相似文献   

4.
A technique is described for the preparation of arborescent graft copolymers containing poly(tert‐butyl methacrylate) (PtBMA) segments. For this purpose, tert‐butyl methacrylate is first polymerized with 1,1‐diphenyl‐2‐methylpentyllithium in tetrahydrofuran. The graft copolymers are obtained by addition of a solution of a bromomethylated polystyrene substrate to the living PtBMA macroanion solution. Copolymers incorporating either short (Mw ≈ 5000) or long (Mw ≈ 30,000) PtBMA side chains were prepared by grafting onto linear, comb‐branched (G0), G1, and G2 bromomethylated arborescent polystyrenes. Branching functionalities ranging from 9 to 4500 and molecular weights ranging from 8.8 × 104 to 6.3 × 107 were obtained for the copolymers, while maintaining a low apparent polydispersity index (Mw/Mn ≈ 1.14–1.25). Arborescent polystyrene‐graft‐poly(methacrylic acid) (PMAA) copolymers were obtained by hydrolysis of the tert‐butyl methacrylate units. Dynamic light scattering measurements showed that the arborescent PMAA copolymers are more expanded than their linear PMAA analogues when neutralized with NaOH. This effect is attributed to the higher charge density in the branched arborescent copolymer structures. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 2335–2346, 2008  相似文献   

5.
Arborescent copolymers with a core‐shell‐corona (CSC) architecture, incorporating a polystyrene (PS) core, an inner shell of poly(2‐vinylpyridine), P2VP, and a corona of PS chains, were obtained by anionic polymerization and grafting. Living PS‐b‐P2VP‐Li block copolymers serving as side chains were obtained by capping polystyryllithium with 1,1‐diphenylethylene before adding 2‐vinylpyridine. A linear or arborescent (generation G0 – G3) PS substrate, randomly functionalized with acetyl or chloromethyl coupling sites, was then added to the PS‐b‐P2VP‐Li solution for the grafting reaction. The grafting yield and the coupling efficiency observed in the synthesis of the arborescent PS‐g‐(P2VP‐b‐PS) copolymers were much lower than for analogous coupling reactions previously used to synthesize arborescent PS homopolymers and PS‐g‐P2VP copolymers from the same types of coupling sites. It was determined from static and dynamic light scattering analysis that PS‐b‐P2VP formed aggregates in THF, the solvent used for the synthesis. This presumably hindered coupling of the macroanions with the substrate, and explains the low grafting yield and coupling efficiency observed in these reactions. Purification of the crude products was also problematic due to the amphipolar character of the CSC copolymers and the block copolymer contaminant. A new fractionation method by cloud‐point centrifugation was developed to purify copolymers of generations G1 and above. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 1075–1085  相似文献   

6.
A method was developed for the synthesis of arborescent polystyrene by “click” coupling. Acetylene functionalities were introduced on linear polystyrene (Mn = 5300 g/mol, Mw/Mn = 1.05) by acetylation and reaction with potassium hydroxide, 18‐crown‐6 and propargyl bromide in toluene. Polymerization of styrene with 6‐tert‐butyldimethylsiloxyhexyllithium yielded polystyrene (Mn = 5200 g/mol, Mw/Mn = 1.09) with a protected hydroxyl chain end. Deprotection, followed by conversions to tosyl and azide functionalities, provided the side chain material. Coupling with CuBr and N,N,N′,N″,N″‐pentamethyldiethylenetriamine proceeded in up to 94% yield. Repetition of the grafting cycles led to well‐defined (Mw/Mn ≤ 1.1) polymers of generations G1 and G2 in 84% and 60% yield, respectively, with Mn and branching functionalities reaching 2.8 × 106 g/mol and 460, respectively, for the G2 polymer. Coupling longer (Mn = 45,000 g/mol) side chains with acetylene‐functionalized substrates was also examined. For a linear substrate, a G0 polymer with Mn = 4.6 × 105 g/mol and Mw/Mn = 1.10 was obtained in 87% yield; coupling with the G0 (Mn = 52,000 g/mol) substrate produced a G1 polymer (Mn = 1.4×106 g/mol, Mw/Mn = 1.38) in 28% yield. The complementary approach using azide‐functionalized substrates and acetylene‐terminated side chains was also investigated, but proceeded in lower yield. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019, 57, 1730–1740  相似文献   

7.
A stereoregular 2‐amino‐glycan composed of a mannosamine residue was prepared by ring‐opening polymerization of anhydro sugars. Two different monomers, 1,6‐anhydro‐2‐azido‐mannose derivative ( 3 ) and 1,6‐anhydro‐2‐(N, N‐dibenzylamino)‐mannose derivative ( 6 ), were synthesized and polymerized. Although 3 gave merely oligomers, 6 was promptly polymerized into high polymers of the number‐average molecular weight (Mn) of 2.3 × 104 to 2.9 × 104 with 1,6‐α stereoregularity. The differences of polymerizability of 3 and 6 from those of the corresponding glucose homologs were discussed. It was found that an N‐benzyl group is exceedingly suitable for protecting an amino group in the polymerization of anhydro sugars of a mannosamine type. The simultaneous removal of O‐ and N‐benzyl groups of the resulting polymers was achieved by using sodium in liquid ammonia to produce the first 2‐amino‐glycan, poly‐(1→6)‐α‐D ‐mannosamine, having high molecular weight through ring‐opening polymerization of anhydro sugars.© 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

8.
A series of side‐chain‐functionalized α‐helical polypeptides, i.e., poly(γ‐4‐(3‐chloropropoxycarbonyl)benzyl‐L‐glutamate) (6) have been prepared from n‐butylamine initiated ring‐opening polymerization (ROP) of γ‐4‐(3‐chloropropoxycarbonyl)benzyl‐L‐glutamic acid‐based N‐carboxyanhydride. Polypeptides bearing oligo‐ethylene‐glycol (OEG) groups or 1‐butylimidazolium salts were prepared from 6 via copper‐mediated [2+3] alkyne‐azide 1,3‐dipolar cycloaddition or nuleophilic substitution, respectively. CD and FTIR analysis revealed that the polymers adopt α‐helical conformations both in solution and the solid state. Polymers bearing OEG (m = 3) side‐chains showed reversible LCST‐type phase transition behaviors in water while polymers bearing 1‐butylimidazolium and I? counter‐anions exhibited reversible UCST‐type transitions in water. Variable‐temperature UV‐vis analysis revealed that the phase transition temperatures (Tpts) were dependent on the main‐chain length and polymeric concentration. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 2469–2480  相似文献   

9.
A multiple grafting technique was used to synthesize arborescent‐branched high‐molecular mass poly(2,3‐epoxypropan‐1‐ol). In the first step, linear polyglycidol (n = 10 300) was obtained. Some of the hydroxyl groups were transformed into alcoholate anions in a reaction with potassium tert‐butoxide, and the obtained polyanion was used to initiate the polymerization of 1‐ethoxyethyl glycidyl ether, the glycidol having a protected hydroxyl group. Removing the protecting groups yielded polyglycidol‐graft‐polyglycidol. This procedure was repeated twice to give three generations of comb‐burst branched polyglycidol chains with n of 8.2×104, 7.4×105 and 1.8×106.  相似文献   

10.
The syntheses of well‐defined 7‐arm and 21‐arm poly(N‐isopropylacrylamide) (PNIPAM) star polymers possessing β‐cyclodextrin (β‐CD) cores were achieved via the combination of atom transfer radical polymerization (ATRP) and click reactions. Heptakis(6‐deoxy‐6‐azido)‐β‐cyclodextrin and heptakis[2,3,6‐tri‐O‐(2‐azidopropionyl)]‐β‐cyclodextrin, β‐CD‐(N3)7 and β‐CD‐(N3)21, precursors were prepared and thoroughly characterized by nuclear magnetic resonance and matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry. A series of alkynyl terminally functionalized PNIPAM (alkyne‐PNIPAM) linear precursors with varying degrees of polymerization (DP) were synthesized via atom transfer radical polymerization (ATRP) of N‐isopropylacrylamide using propargyl 2‐chloropropionate as the initiator. The subsequent click reactions of alkyne‐PNIPAM with β‐CD‐(N3)7 and β‐CD‐(N3)21 led to the facile preparation of well‐defined 7‐arm and 21‐arm star polymers, namely β‐CD‐(PNIPAM)7 and β‐CD‐(PNIPAM)21. The thermal phase transition behavior of 7‐arm and 21‐arm star polymers with varying molecular weights were examined by temperature‐dependent turbidity and micro‐differential scanning calorimetry, and the results were compared to those of linear PNIPAM precursors. The anchoring of PNIPAM chain terminal to β‐CD cores and high local chain density for star polymers contributed to their considerably lower critical phase separation temperatures (Tc) and enthalpy changes during phase transition as compared with that of linear precursors. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 404–419, 2009  相似文献   

11.
Branched and star‐branched polymers were successfully synthesized by the combination of two successive controlled radical polymerization methods. A series of linear and star poly(n‐butyl acrylate)‐co‐poly(2‐(2‐bromoisobutyryloxy) ethyl acrylate) statistical copolymers, P(nBA‐co‐BIEA)x, were first synthesized by nitroxide‐mediated polymerization (NMP at T > 100 °C). The subsequent polymerization of n‐butyl acrylate by single electron transfer‐living radical polymerization (SET‐LRP at T = 25 °C), initiated from the brominated sites of the P(nBA‐co‐BIEA)x copolymer, produced branched or star‐branched poly(n‐butyl acrylate) (PnBA). Both types of polymerizations (NMP and SET‐LRP) exhibited features of a controlled polymerization with linear evolutions of logarithmic conversion versus time and number‐average molar masses versus conversion for final Mn superior to 80,000 g mol?1. The branched and star‐branched architectures with high molar mass and low number of branches were fully characterized by size exclusion chromatography. The Mark–Houwink Sakurada relationship and the analysis of the contraction factor (g′ = ([η]branched/[η]linear)M) confirmed the elaboration of complex PnBA. The zero‐shear viscosities of the linear, star‐shaped, branched, and star‐branched polymers were compared. The modeling of the rheological properties confirmed the synthesis of the branched architectures. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

12.
A synthetic route is developed for the preparation of an AB‐type of monomer carrying an epoxy and a thiol group. Base‐catalyzed thiol‐epoxy polymerization of this monomer gave rise to poly(β‐hydroxythio‐ether)s. A systematic variation in the reaction conditions suggested that tetrabutyl ammonium fluoride, lithium hydroxide, and 1,8‐diazabicycloundecene (DBU) were good polymerization catalysts. Triethylamine, in contrast, required higher temperatures and excess amounts to yield polymers. THF and water could be used as polymerization mediums. However, the best results were obtained in bulk conditions. This required the use of a mechanical stirrer due to the high viscosity of the polymerization mixture. The polymers obtained from the AB monomer route exhibited significantly higher molecular weights (Mw = 47,700, Mn = 23,200 g/mol) than the materials prepared from an AA/BB type of the monomer system (Mw = 10,000, Mn = 5400 g/mol). The prepared reactive polymers could be transformed into a fluorescent or a cationic structure through postpolymerization modification of the reactive hydroxyl sites present along the polymer backbone. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 2040–2046  相似文献   

13.
A new anhydro disaccharide monomer, 1,6‐anhydro‐2,3‐di‐o‐benzyl‐4‐o‐(2′,3′,4′,6′‐tetra‐o‐benzyl‐β‐D ‐galactopyranosyl)‐β‐D ‐glucopyranose (benzylated 1,6‐anhydro lactose (LSHBE)), was synthesized from D ‐lactose to investigate the polymerizability and biological activities of the resulting branched polysaccharides. The ring‐opening polymerization of LSHBE was carried out with phosphorus pentafluoride as a catalyst under high vacuum to give a stereoregular benzylated (1 → 6)‐α‐D ‐lactopyranan. The molecular weights of poly(LSHBE)s increased with an increase in the amount of CH2Cl2 solvent, and polymerization temperatures were affected in both molecular weights and yields of the polymers. The copolymerization of LSHBE with benzylated 1,6‐anhydro‐β‐D ‐glucopyranose (LGTBE) gave the corresponding copolysacchrides having different proportions of lactose and glucose units in good yields. After debenzylation to recover hydroxyl groups and then sulfation, sulfated homopoly(lactose)s and copoly(lactose and glucose)s were obtained. Sulfated homopoly(lactose)s had moderate anti‐HIV (EC50 = 5.9 and 1.3 μg/mL) and blood anticoagulant activities (AA = 18 and 13 unit/mg), respectively. Sulfated copoly(lactose and glucose) having 15 mol % lactose units gave high anti‐HIV and blood anticoagulant activities of 0.3 μg/mL and 54 unit/mg, respectively. These biological results suggest that the distance between branched units on the main chain plays an important role in the anti‐HIV and blood anticoagulant activities. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 913–924, 2009  相似文献   

14.
The preparation of star‐shaped poly(γ‐benzyl‐L ‐glutamate)s by the ring‐opening polymerization of N‐carboxy anhydride γ‐benzyl‐L ‐glutamate (BLG‐NCA) with hexakis(4‐aminomethylphenoxy)‐ ( 4 ) and hexakis(4‐aminophenoxy)cyclotriphosphazenes ( 6 ), and the conformation of resulting polymers has been studied. The six amino groups in 4 can initiate the polymerization of BLG‐NCA to give star‐shaped polyglutamates ( 7 ) with narrow molecular weight distributions (M w/M n = 1.10–1.33). For the polymerization of BLG‐NCA with 6 , however, a high ratio of [BLG‐MCA]/[ 6 ] was required to obtain star‐shaped polyglutamates ( 8 ). The conformation of 7 changed from a β‐sheet form to a right‐handed α‐helix form, depending on the degree of polymerization per chain (DP n/6). The helix content of hexa‐armed poly (γ‐benzyl‐L ‐glutamate‐co‐L ‐glutamic acid)s ( 9 ), prepared by partial hydrolysis of 7 , increased significantly compared with that of the corresponding linear analogue ( 10 ). As increasing of helix content of 9 , the fluorescence spectra of 8‐anilino‐1‐naphthalenesulfonic acid (ANS), a fluorescence probe, shifted to a short wavelength accompanied by the enhancement of intensity, suggesting that star‐shaped polymers are liable to form hydrophobic domains. From these results and the structural feature of the cyclotriphosphazene core, the formation of a 3α‐helix bundle structure of polyglutamates on both sides of the phosphazene ring has been suggested.

  相似文献   


15.
Dendritic multifunctional macroinitiators having 12 TEMPO‐based alkoxyamines were prepared by the reaction of a benzyl alcohol having 4 TEMPO‐based alkoxyamines with 1,3,5‐tris[(4‐chlorocarbonyl)phenyl]benzene and 1,3,5‐tris(4‐isocyanatophenyl)benzene. Using the dodecafunctional macroinitiators, TEMPO‐mediated radical polymerizations of styrene (St) were carried out at 120 °C, and 12‐arm star polymers ( star‐12 ) with narrow polydispersities of Mw/Mn = 1.06–1.26 were obtained. To evaluate the livingness for the TEMPO‐mediated radical polymerizations of St, hydrolysis of the ester bonds of the 12‐arm star polymers and subsequent SEC measurements were carried out. Furthermore, using star‐12 as the macroinitiator, TEMPO‐mediated radical polymerization of 4‐vinylpyridine (4‐VP) was carried out, and well‐defined poly(St)‐b‐poly(4‐VP) 12‐arm star diblock copolymers with Mw/Mn = 1.18–1.19 were obtained. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 3689–3700, 2005  相似文献   

16.
A π‐conjugated poly(α‐dithienylen‐dithiafulvene) ( 2 ) was obtained by the oxidation polymerization of 2,6‐bis(2‐thienyl)‐1,4‐dithiafulvene ( 1 ) as a dithiafulvene monomer derived from 4‐(2‐thienyl)‐1,2,3‐thiadiazole. When a solution of 1 in CHCl3 was added to a stirred solution of FeCl3 in CHCl3, only the low‐molecular‐weight product 2 was obtained. The mixture was stirred for 15 h with an N2 flow. The polymerization at higher temperatures resulted in polymers with large insoluble fractions. A higher molecular weight polymer was obtained by the oxidation polymerization of a charge‐transfer complex of 1 with 7,7,8,8‐tetracyanoquinodimethane (compound 3 ). In contrast to 2 , polymer 4 was readily soluble in dimethyl sulfoxide, dimethylformamide, and acetone and partially soluble in tetrahydrofuran and methanol and had a larger molecular weight (peak top molecular weight = 37,000). The conductivity of polymer 4 was 3 orders of magnitude larger than that of polymer 2 . © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 6592–6598, 2005  相似文献   

17.
The reversible addition‐fragmentation chain transfer (RAFT) copolymerization of styrene and 4‐vinylbenzyl dithiobenzoate, a RAFT‐based inimer (initiator‐monomer), is described. Controlled polymerization was achieved in bulk conditions using thermal initiation at 110 °C to give arborescent polystyrene (arbPSt). The number‐average molecular weights of the polymers increased linearly with conversion and were much higher than theoretically calculated for a linear polymerization, reaching Mn = 364,000 g/mol with Mw/Mn = 2.65. Branching analysis by NMR showed an average of 3.5 branches per chain. SEC data, which were similar to those measured in arborescent polyisobutylene, supported the architectural analysis. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 7621–7627, 2008  相似文献   

18.
Poly(benzyl‐L ‐glutamate) (PBLG) macromonomers were synthesized by N‐carboxyanhydride (NCA) polymerization initiated with 4‐vinyl benzylamine. MALDI‐ToF analysis confirmed the presence of styrenic end‐groups in the PBLG. Free‐radical and RAFT polymerization of the macromonomer in the presence of divinyl benzene produced star polymers of various molecular weights, polydispersity, and yield depending on the reaction conditions applied. The highest molecular weight (Mw) of 10,170,000 g/mol was obtained in a free‐radical multibatch approach. It was shown that the PBLG star polymers can be deprotected to obtain poly(glutamic acid) star polymers, which form water soluble pH responsive nanoparticles. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

19.
A series of OEGylated poly(γ‐benzyl‐l ‐glutamate) with different oligo‐ethylene‐glycol side‐chain length, molecular weight (MW = 8.4 × 103 to 13.5 × 104) and narrow molecular weight distribution (PDI = 1.12–1.19) can be readily prepared from triethylamine initiated ring‐opening polymerization of OEGylated γ‐benzyl‐l ‐glutamic acid based N‐carboxyanhydride. FTIR analysis revealed that the polymers adopted α‐helical conformation in the solid‐state. While they showed poor solubility in water, they exhibited a reversible upper critical solution temperature (UCST)‐type phase behavior in various alcoholic organic solvents (i.e., methanol, ethanol, 1‐propanol, 1‐butanol, 1‐pentanol, and isopropanol). Variable‐temperature UV–vis analysis revealed that the UCST‐type transition temperatures (Tpts) of the resulting polymers were highly dependent on the type of solvent, polymer concentration, side‐ and main‐chain length. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 1348‐1356  相似文献   

20.
A series of activated urethane‐type derivatives of γ‐benzyl‐L ‐glutamate were synthesized, and their potential as monomers for polypeptide synthesis was investigated. The derivatives of the focus of this work were a series of N‐aryloxycarbonyl‐γ‐benzyl‐L ‐glutamate 1 , of which aryl groups were phenyl, 4‐chlorophenyl, and 4‐nitrophenyl. These urethanes 1 were reactive in polar solvents such as dimethylsulfoxide, N,N‐dimethylformamide (DMF), and N,N‐dimethylacetamide (DMAc), and were efficiently converted into poly(γ‐benzyl‐L ‐glutamate) (poly(BLG)) under mild conditions; at 60 °C without addition of any catalyst. Among the three urethanes, that having 4‐nitrophenoxycarbonyl group 1c was the most reactive to give poly(BLG) efficiently, as was expected from the highly electron deficient nature of the nitrophenoxycarbonyl group. On the other hand, the urethane 1a having phenoxycarbonyl group was also efficiently converted into poly(BLG), in spite of the intrinsically less electrophilicity of the phenoxycarbonyl group. In addition, the successful formation of poly(BLG) by the reaction of 1a favored its diluted concentration (0.1 M) much more than 2.0 M, the optimum initial concentration for 1c . 1H NMR spectroscopic analyses of the reactions in situ revealed that the predominant pathway from 1 to poly(BLG) involved the intramolecular cyclization of 1 into the corresponding N‐carboxyanhydride, with release of phenol and its successive ring‐opening polymerization with release of carbon dioxide. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 2649–2657, 2008  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号