共查询到20条相似文献,搜索用时 0 毫秒
1.
P. Forcén L. Oriol C. Sánchez R. Alcalá S. Hvilsted K. Jankova J. Loos 《Journal of polymer science. Part A, Polymer chemistry》2007,45(10):1899-1910
Diblock copolymers with polymethyl methacrylate and side chain liquid crystalline (LC) azopolymethacrylate blocks were synthesized by atom transfer radical polymerization (ATRP). The azobenzene content in these copolymers ranges from 52 to 7 wt %. For an azo content down to 20% they exhibit a LC behavior similar to that of the azo homopolymers. Thin films of these copolymers were characterized by transmission electron microscopy (TEM). A lamellar nanostructure was observed for azo content down to 20 wt %, while no structure is observed for the copolymer with a 7% azo content. The optical anisotropy induced in these films by illumination with linearly polarized 488 nm light was studied and the results compared with those of the azo homopolymer and of a random copolymer with a similar composition. The formation of azo aggregates inside the azo blocks is strongly reduced in going from the homopolymer to the copolymers. Photoinduced azo orientation perpendicular to the 488 nm light polarization was found in all the polymers. The orientational order parameter is very similar in the homopolymer and in the block copolymers with an azo content down to 20 wt %, while it is much lower in the random copolymer and in the 7 wt %. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 1899–1910, 2007 相似文献
2.
Xiaohua He Wuqiong Sun Deyue Yan Meiran Xie Yiqun Zhang 《Journal of polymer science. Part A, Polymer chemistry》2008,46(13):4442-4450
A series of novel side‐chain liquid crystalline ABC triblock copolymers composed of poly(ethylene oxide) (PEO), polystyrene (PS), and poly[6‐(4‐methoxy‐4′‐oxy‐azobenzene) hexyl methacrylate] (PMMAZO) were synthesized by atom transfer radical polymerization (ATRP) using CuBr/1,1,4,7,7‐pentamethyldiethylenetriamine (PMDETA) as a catalyst system. First, the bromine‐terminated diblock copolymer poly(ethylene oxide)‐block‐polystyrene (PEO‐PS‐Br) was prepared by the ATRP of styrene initiated with the macro‐initiator PEO‐Br, which was obtained from the esterification of PEO and 2‐bromo‐2‐methylpropionyl bromide. An azobenzene‐containing block of PMMAZO with different molecular weights was then introduced into the diblock copolymer by a second ATRP to synthesize the novel side‐chain liquid crystalline ABC triblock copolymer poly(ethylene oxide)‐block‐polystyrene‐block‐poly[6‐(4‐methoxy‐4′‐oxy‐azobenzene) hexyl methacrylate] (PEO‐PS‐PMMAZO). These block copolymers were characterized using proton nuclear magnetic resonance (1H NMR) and gel permeation chromatograph (GPC). Their thermotropic phase behaviors were investigated using differential scanning calorimetry (DSC) and polarized optical microscope (POM). These triblock copolymers exhibited a smectic phase and a nematic phase over a relatively wide temperature range. At the same time, the photoresponsive properties of these triblock copolymers in chloroform solution were preliminarily studied. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 4442–4450, 2008 相似文献
3.
Ziyue Ma Cui Zheng Zhihao Shen Dehai Liang Xinghe Fan 《Journal of polymer science. Part A, Polymer chemistry》2012,50(5):918-926
A series of novel comb polymers, poly{2,5‐bis[(4‐methoxyphenyl)oxycarbonyl]styrene}‐g‐polystyrene (PMPCS‐g‐PS), with mesogen‐jacketed rigid side chains were synthesized by the “grafting onto” method from α‐yne‐terminated PMPCS (side chain) and poly(vinylbenzyl azide) (backbone) by Cu(I)‐catalyzed 1,3‐dipolar cycloaddition click reaction. The α‐yne‐terminated PMPCS was synthesized by Cu(I)‐catalyzed atom transfer radical polymerization initiated by a yne‐functional initiator. Poly(vinylbenzyl azide) was prepared by polymerizing vinylbenzyl chloride using nitroxide mediated radical polymerization to obtain poly(vinylbenzyl chloride) as the precursor which was then converted to the azide derivative. The chemical structure and architectures of PMPCS comb polymers were confirmed by 1H NMR, gel permeation chromatography, and multiangle laser light scattering. Both surface morphologies and solution behaviors were investigated. Surface morphologies of PMPCS combs on different surfaces were investigated by scanning probe microscopy. PMPCS combs showed different aggregation morphologies when depositing on silicon wafers with/without chemical modification. The PMPCS comb polymers transferred to polymer‐modified silicon wafers using the Langmuir‐Blodgett technique showed a worm‐like chain conformation. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012 相似文献
4.
Yi Yi Xinhua Wan Xinghe Fan Rong Dong Qifeng Zhou 《Journal of polymer science. Part A, Polymer chemistry》2003,41(12):1799-1806
A series of novel rod–coil diblock copolymers on the basis of mesogen‐jacketed liquid‐crystalline polymer were successfully prepared by atom transfer radical polymerization from the flexible polydimethylsiloxane (PDMS) macroinitiator. The hybrid diblock copolymers, poly{2,5‐bis[(4‐methoxyphenyl)oxycarbonyl]styrene}‐block‐polydimethylsiloxane, had number‐average molecular weights (Mn's) ranging from 9500 to 30,900 and relatively narrow polydispersities (≤1.34). The polymerization proceeded with first‐order kinetics. Data from differential scanning calorimetry validated the microphase separation of the diblock copolymers. All block copolymers exhibited thermotropic liquid‐crystalline behavior except for the one with Mn being 9500. Four liquid‐crystalline diblock copolymers with PDMS weight fractions of more than 18% had two distinctive glass‐transition temperatures. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 1799–1806, 2003 相似文献
5.
Guoliang Jiang Huanhuan Cai Zhihao Shen Xinghe Fan Qifeng Zhou 《Journal of polymer science. Part A, Polymer chemistry》2013,51(3):557-564
A series of mesogen‐jacketed liquid crystalline polymers, poly{2,2,3,3,4,4,4‐heptafluorobutyl 4′‐hydroxy‐2‐vinylbiphenyl‐4‐carboxylate} (PF3Cm, where m is the number of carbon atoms in the alkoxy groups, and m = 1, 4, 6, and 8), the side chain of which contains a biphenyl core with a fluorocarbon substituent at one end and an alkoxy unit of varying length on the other end, were designed and successfully synthesized via atom transfer radical polymerization. For comparison, poly{butyl 4′‐hydroxy‐2‐vinylbiphenyl‐4‐carboxylate} (PC4Cm), similar to PF3Cm but with a butyl group instead of the fluorocarbon substituent, was also prepared. Differential scanning calorimetric results reveal that the glass transition temperatures (Tgs) of the two series of polymers decrease as m increases and Tgs of the fluorocarbon‐substituted polymers are higher than those of the corresponding butyl‐substituted polymers. Wide‐angle X‐ray diffraction measurements show that the mesophase structures of these polymers are dependent on the number of the carbon atoms in the fluorocarbon substituent and the property of the other terminal substituent. Polymers with fluorocarbon substituents enter into columnar nematic phases when m ≥ 4, whereas the polymer PF3C1 exhibits no liquid crystallinity. For polymers with butyl substituents, columnar nematic phases form when the number of carbon atoms at both ends of the side chain is not equal at high temperatures and disappear after the polymers are cooled to ambient temperature. However, when the polymer has the same number of carbon atoms at both ends of the side chain, a hexagonal columnar phase develops, and this phase remains after the polymer is cooled. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013 相似文献
6.
Kuan‐Wei Lee Hong‐Cheu Lin 《Journal of polymer science. Part A, Polymer chemistry》2007,45(20):4564-4572
A series of new liquid crystalline homopolymers, copolymers, and block copolymers were polymerized from styrene‐macroinitiator ( SMi ) and methacrylates with pendent 4,4′‐bis(biphenyl)fluorene ( M1 ) and biphenyl‐4‐ylfluorene ( M2 ) groups through atom transfer radical polymerization (ATRP). The number‐average molecular weights (Mn) of polymers P1 ‐ P4 were 10,007, 14,852, 6,275, and 10,463 g mol?1 with polydispersity indices values of 1.21, 1.15, 1.31, and 1.22, respectively. All polymers exhibit the nematic phase. The thermal, mesogenic, and photoluminescent properties of all polymers were investigated. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 4564–4572, 2007 相似文献
7.
Xinde Tang Longcheng Gao Nianfeng Han Xinghe Fan Qifeng Zhou 《Journal of polymer science. Part A, Polymer chemistry》2007,45(15):3342-3348
4‐Arm star side‐chain liquid crystalline (LC) polymers containing azobenzene with different terminal substituents were synthesized by atom transfer radical polymerization (ATRP). Tetrafunctional initiator prepared by the esterification between pentaerythritol and 2‐bromoisobutyryl bromide was utilized to initiate the polymerization of 6‐[4‐(4‐methoxyphenylazo)phenoxy]hexyl methacrylate (MMAzo) and 6‐[4‐(4‐ethoxyphenylazo)phenoxy]hexyl methacrylate (EMAzo), respectively. The 4‐arm star side‐chain LC polymer with p‐methoxyazobenzene moieties exhibits a smectic and a nematic phase, while that with p‐ethoxyazobenzene moieties shows only a nematic phase, which derives of different terminal substituents. The star polymers have similar LC behavior to the corresponding linear homopolymers, whereas transition temperatures decrease slightly. Both star polymers show photoresponsive isomerization under the irradiation with UV–vis light. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 3342–3348, 2007 相似文献
8.
Xiaohua He Hailiang Zhang Deyue Yan Xiayu Wang 《Journal of polymer science. Part A, Polymer chemistry》2003,41(18):2854-2864
A series of side‐chain liquid‐crystalline (LC) homopolymers of poly[6‐(4‐methoxy‐4′‐oxy‐azobenzene) hexyl methacrylate] with different degrees of polymerization were synthesized by atom transfer radical polymerization (ATRP), which were prepared with a wide range of number‐average molecular weights from 5.1 × 103 to 20.6 × 103 with narrow polydispersities of around 1.17. Thermal investigation showed that the homopolymers exhibit two mesophases, a smectic phase, and a nematic phase, and the phase‐transition temperatures of the homopolymers increase clearly with increasing molecular weights. A series of novel LC coil triblock copolymers with narrow polydispersities was synthesized by ATRP, and their thermotropic phase behavior was investigated with differential scanning calorimetry and polarized optical microscopy. The LC coil triblocks were designed to have an LC conformation of poly[6‐(4‐methoxy‐4′‐oxy‐azobenzene) hexyl methacrylate] with a wide range of molecular weights from 3.5 × 103 to 1.7 × 104 and the coil conformation of poly(ethylene glycol) (PEG) (number‐average molecular weight: 6000 or 12,000) segment. Their characterization was investigated with 1H NMR, Fourier transform infrared spectra, and gel permeation chromatography. Triblock copolymers exhibited a crystalline phase, a smectic phase, and a nematic phase. The phase‐transition temperatures from the smectic to nematic phase and from the nematic to isotropic phase increased, and the crystallization of PEG depressed with increasing molecular weight of the LC block. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 2854–2864, 2003 相似文献
9.
Jian‐She Hu Bao‐Yan Zhang Ying Wang Fan‐Bao Meng 《Journal of polymer science. Part A, Polymer chemistry》2004,42(15):3870-3878
New side‐chain liquid‐crystalline polymers containing both cholesteric and thermochromic side groups were synthesized. Their chemical structures were confirmed with elemental analyses and Fourier transform infrared, proton nuclear magnetic resonance, and carbon‐13 nuclear magnetic resonance spectra. The mesogenic properties and phase behavior were investigated with differential scanning calorimetry, thermogravimetric analysis, polarizing optical microscopy, and X‐ray diffraction measurements. The effect of the concentration of dye side groups on the phase behavior of the polymers was examined. The polymers showed smectic or cholesteric phases. Those polymers containing less than 20 mol % dye groups had good solubility, reversible phase transitions, wider mesophase temperature ranges, and higher thermal stability. The experimental results demonstrated that the isotropization temperature and mesophase temperature ranges decreased with an increasing concentration of dye groups. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 3870–3878, 2004 相似文献
10.
Nikos P. Tzanetos Joannis K. Kallitsis 《Journal of polymer science. Part A, Polymer chemistry》2005,43(5):1049-1061
Atom transfer radical polymerization was used to prepare well‐defined vinyl polyoxadiazole homomacromonomers with a properly modified α‐dicarboxylic acid methyl ester as the initiator. Macromonomers of various molecular weights with narrow polydispersities in some cases were obtained, as proved by gel permeation chromatography (GPC). The structures of the obtained macromonomers were then identified with 1H NMR spectroscopy. These macromonomers were subsequently copolymerized with a dihydroxy anthracene based monomer by a polycondensation technique, and this resulted in polymacromonomers. Coil–rod–coil copolymers containing side‐chain anthracene and oxadiazole units were also synthesized by atom transfer radical polymerization. The resulting copolymers combined an anthracene derivative as the rigid block with a random copolymer of the desired anthracene‐ and/or oxadiazole‐based monomers as the flexible block. These copolymers were primarily characterized with GPC and 1H NMR techniques. Additionally, the optical properties of all these copolymers were investigated in detail, and they suggested energy transfer from the oxadiazole to the anthracene chromophores, which became much more efficient in the solid state. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 1049–1061, 2005 相似文献
11.
Miron Bugakov Natalia Boiko Valery Shibaev 《Journal of Polymer Science.Polymer Physics》2016,54(16):1602-1611
Photoorientation and reorientation processes induced by illumination of the samples with oppositely directed polarized light and by the thermal treatment were studied for the films of triblock copolymer pAzo10‐b‐pPhM80‐b‐pAzo10 consisting of a nematic phenyl benzoate сentral sub‐block (PhM, DP = 80) with two terminal smectic azobenzene sub‐blocks (Azo, DP = 10). For amorphized films of triblock copolymer, illumination with polarized light (λ = 546 nm) is shown to be by orientation of only Azo‐containing groups, but upon following annealing of the film, PhM groups are adjusted to the orientation of Azo fragments. It was found, that the subsequent illumination of the block copolymer sample with oppositely directed polarized light changes the orientation of azobenzene groups, while the orientation of phenyl benzoate groups is remained unchanged. Thus, the cyclic illumination of the triblock copolymer samples by the linear polarized light and subsequent thermal treatment make it possible to control and fix orientation of azobenzene and phenyl benzoate groups located in different sub‐blocks in the desired and independent manner. The comparison of these results with the data on random p(Azo7‐ran‐PhM30) copolymer of the similar composition revealed, that in the random copolymer, both Azo and PhM mesogenic groups are involved in the orientational cooperative process regardless of films process treatment. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54, 1602–1611 相似文献
12.
Synthesis and characterization of side‐chain liquid crystalline polymers bearing cholesterol mesogen
Suk‐Kyun Ahn Long T. Nguyen Le Rajeswari M. Kasi 《Journal of polymer science. Part A, Polymer chemistry》2009,47(10):2690-2701
A series of new norbornene carboxylic cholesteryl ester monomers with and without alkyl spacers, NBCh, and NBCh‐n , respectively, were synthesized. New side‐chain liquid crystalline homopolymers, PNBCh and PNBCh‐n , were cleanly prepared using NBCh and NBCh‐n , respectively, with Grubbs 2nd generation catalyst. Molecular and structural characterization of monomers and polymers were carried out by nuclear magnetic resonance, NMR, Fourier transform infrared, FT‐IR, spectroscopy, and gel permeation chromatography, GPC. The thermal and liquid crystalline properties of the homopolymers were investigated by differential scanning calorimetry, DSC, thermogravimetric analysis, TGA, and polarized optical microscopy, POM. Small angle and wide angle X‐ray studies of PNBCh‐n in powder and fiber states not only confirmed the formation of smectic A mesophases, but also established their morphologies. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 2690–2701, 2009 相似文献
13.
M. Vijay Srinivasan P. Kannan A. Roy 《Journal of polymer science. Part A, Polymer chemistry》2013,51(4):936-946
New class of photo and electrically switchable azobenzene containing pendant bent‐core liquid crystalline monomers ( AZBM 1, 2 , and 3 ) and their polymers ( AZBP 1, 2 , and 3 ) are reported. The synthesized precursors, monomers, and polymers were characterized by FT‐IR, 1H, and 13C NMR spectroscopy. Thermal stability of polymers was examined by thermogravimetric analysis and revealed stable up to 260 °C. The mesophase transition of monomers and polymers are observed through polarized optical microscopy (POM) and further confirmed by differential scanning calorimetry (DSC). The electrically switching property of monomers and their polymers were studied by electro‐optical method. Among the three monomers AZBM 1, 2 , and 3 , AZBM 1 and 2 exhibit antiferroelectric (AF) switching and AZBM 3 exhibits ferroelectric (F) switching behavior. On the other hand, low molecular weight polymers ( AZMP 1, 2 , and 3 ) show weak AF and F switching behavior. The photo‐switching properties of bent‐core azo polymers are investigated using UV‐vis spectroscopy, trans to cis isomerization occurs around 25 s for AZBP‐1 and 30 s for AZBP‐2 and 3 in chloroform, whereas reverse processes take place around 80 and 90 s. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013 相似文献
14.
Kuan‐Wei Lee Kung‐Hwa Wei Hong‐Cheu Lin 《Journal of polymer science. Part A, Polymer chemistry》2006,44(15):4593-4602
A series of new mesomorphic block copolymers composedofdifferentmacroinitiators, including poly(ethylene oxide), polystyrene, and poly(ethylene oxide)‐b‐polystyrene,and polymethacrylate with a pendent cyanoterphenyl group were synthesized through atom transfer radical polymerization. The number‐average molecular weights of the three diblock copolymers, determined by gel permeation chromatography, were 10,254, 9,772, and 15,632 g mol?1, and their polydispersity indices were 1.17, 1.28, and 1.34. The mesomorphic and optical properties of all the block copolymers were investigated, and they possessed a smectic A phase with mesophasic ranges wider than 100 °C. Moreover, X‐ray diffraction patterns provided evidence of the smectic A phase and the corresponding interdigitated packing of all the polymers. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 4593–4602, 2006 相似文献
15.
Yongfen Tong Lie Chen Xiaohui He Yiwang Chen 《Journal of polymer science. Part A, Polymer chemistry》2013,51(20):4341-4350
Novel star‐shaped hard–soft triblock copolymers, 4‐arm poly(styrene)‐block‐poly [poly(ethylene glycol) methyl ethyl methacrylate]‐block‐poly{x‐[(4‐cyano‐4′‐biphenyl) oxy] alkyl methacrylate} (4PS‐PPEGMA‐PMAxLC) (x = 3, 10), with different mesogen spacer length are prepared by atom‐transfer radical polymerization. The star copolymers comprised three different parts: a hard polystyrene (PS) core to ensure the good mechanical property of the solid‐state polymer, and a soft, mobile poly[poly(ethylene glycol) methyl ethyl methacrylate] (PPEGMA) middle sphere responsible for the high ionic conductivity of the solid polyelectrolytes, and a poly{x‐[(4‐cyano‐4′‐biphenyl)oxy]alkyl methacrylate} with a birefringent mesogens at the end of each arm to tuning the electrolytes morphology. The star‐shaped hard–soft block copolymers fusing hard PS core with soft PPEGMA segment can form a flexible and transparent film with dimensional stability. Thermal annealing from the liquid crystalline states allows the cyanobiphenyl mesogens to induce a good assembly of hard and soft blocks, consequently obtaining uniform nanoscale microphase separation morphology, and the longer spacer is more helpful than the shorter one. There the ionic conductivity has been improved greatly by the orderly continuous channel for efficient ion transportation, especially at the elevated temperature. The copolymer 4PS‐PPEGMA‐PMA10LC shows ionic conductivity value of 1.3 × 10?4 S cm?1 (25 °C) after annealed from liquid crystal state, which is higher than that of 4PS‐PPEGMA electrolyte without mesogen groups. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 4341–4350 相似文献
16.
Helou Xie Tianhui Hu Xuefei Zhang Hailaing Zhang Erqiang Chen Qifeng Zhou 《Journal of polymer science. Part A, Polymer chemistry》2008,46(22):7310-7320
A novel combined main‐chain/side‐chain liquid crystalline polymer based on mesogen‐jacketed liquid crystal polymers (MJLCPs) containing two biphenyls per mesogenic core of MJLCPs main chain, poly(2,5‐bis{[6‐(4‐butoxy‐4′‐oxy‐biphenyl)hexyl]oxycarbonyl}styrene) (P1–P8) was successfully synthesized via atom transfer radical polymerization (ATRP). The chemical structure of the monomer was confirmed by elemental analysis, 1H NMR, and 13C NMR. The molecular characterizations of the polymer with different molecular weights (P1–P8) were performed with 1H NMR, gel permeation chromatography (GPC), and thermogravimetric analysis (TGA). Their phase transitions and liquid‐crystalline behaviors of the polymers were investigated by differential scanning calorimetry (DSC) and polarized optical microscope (POM). We found that the polymers P1–P8 exhibited similar behavior with three different liquid crystalline phases upon heating to or cooling in addition to isotropic state, which should be related to the complex liquid crystal property of the side‐chain and the main‐chain. Moreover, the transition temperatures of liquid crystalline phases of P1–P8 are found to be dependent on the molecular weight. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 7310–7320, 2008 相似文献
17.
Bin Mu Xiao Li Keyang Chen Yongming Zeng Jianglin Fang Dongzhong Chen 《Journal of polymer science. Part A, Polymer chemistry》2017,55(15):2544-2553
Liquid crystalline block copolymers (LCBCPs) are fascinating for their combining molecular level liquid crystalline orders and microphase separated multidomain morphologies. Here in this article, a series of PEG‐containing side‐chain discotic LCBCPs of PEG‐b‐Pm‐n with variant spacer length m = 6, 10 and degree of polymerization (DP) of discotic LC block from n = 10 to 45, have been well‐synthesized via reversible addition‐fragmentation chain‐transfer (RAFT) polymerization. The RAFT process mediated by macromolecular chain transfer agent (macroCTA) shows remarkable monomer concentration dependence. The influence of the introduced PEG block on the nano‐scale microphase‐segregation and mesophase organization is closely related to the side‐chain triphenylene (TP) discogens stacking mode dependent on the spacer length. Wherein, the PEG‐b‐P6‐n series with a six‐methylene spacer exhibit consistent microphase separation with slightly disturbed yet ordered columnar structures. While for PEG‐b‐P10‐n series with a longer ten‐methylene spacer, the columnar organization in the copolymers is even improved in contrast with the low order of randomly TP stacking in their corresponding homopolymers. This work offers a viable and inspiring pathway for controlled synthesis of block copolymers with bulky side groups, as well as enhances in‐depth understanding of the hierarchical superstructure organization in discotic units involved complex block copolymers. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 2544–2553 相似文献
18.
Raquel Alicante Rafael Cases Patricia Forcén Luis Oriol Belén Villacampa 《Journal of polymer science. Part A, Polymer chemistry》2010,48(1):232-242
Azobenzene monomeric precursors bearing piperazine as donor moiety with different withdrawing groups and derived side chain polymethacrylates have been prepared and characterized. Monomers having terminal cyano or nitro groups, and the corresponding polymers, exhibited smectic A phases. Linear and nonlinear optical properties of every monomer and thin films of the cyano polymer ( pol‐PZ‐CN ) have been also studied. UV‐vis spectroscopy revealed out‐of‐plane orientation in the as prepared films, as confirmed by waveguide refractive index measurements. Moreover, absorption spectra indicated the presence of azo aggregates in these films. The initial molecular arrangement has been modified by applying thermal annealing within the mesophase range and UV‐blue irradiation. Although thermal annealing resulted in a significant amplification of the out‐of‐plane optical anisotropy due to thermotropic self‐organization of side chain azo moieties, irradiation with 440 nm light induced some disruption of aggregates. The nonlinear optical response of Corona poled films has been studied by second harmonic generation measurements, and the influence of the molecular arrangement on the nonlinear dij coefficients has been analyzed. The more efficient poling corresponded to preirradiated films. In any case, a noticeable degree of polar order (70% of the initial d33 value) remained for several months after the poling in films kept at RT. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 232–242, 2010 相似文献
19.
Xingzhu Wang Hailiang Zhang Mao Shi Xiayu Wang Qifeng Zhou 《Journal of polymer science. Part A, Polymer chemistry》2005,43(4):733-741
A bromine capped star‐shaped poly(methyl methacrylate) (S‐PMMA‐Br) was synthesized with CuBr/sparteine/PT‐Br as a catalyst and initiator to polymerize methyl methacrylate (MMA) according to atom transfer radical polymerization (ATRP). Then, with S‐PMMA‐Br as a macroinitiator, a series of new liquid crystal rod–coil star block copolymers with different molecular weights and low polydispersity were obtained by this method. The block architecture {coil‐conformation of the MMA segment and rigid‐rod conformation of 2,5‐bis[(4‐methoxyphenyl)oxycarbonyl] styrene segment} of the four‐armed rod–coil star block copolymers were characterized by 1H NMR. The liquid‐crystalline behavior of these copolymers was studied by differential scanning calorimetry and polarized optical microscopy. We found that the liquid‐crystalline behavior depends on the molecular weight of the rigid segment; only the four‐armed rod–coil star block copolymers with each arm's Mn,GPC of the rigid block beyond 0.91 × 104 g/mol could form liquid‐crystalline phases above the glass‐transition temperature of the rigid block. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 733–741, 2005 相似文献
20.
Haifeng Yu Atsushi Shishido Tomiki Ikeda Tomokazu Iyoda 《Macromolecular rapid communications》2005,26(20):1594-1598
Summary: Based on a hydrophilic poly(ethylene oxide) macroinitiator (PEOBr), a novel amphiphilic diblock copolymer PEO‐block‐poly(11‐(4‐cyanobiphenyloxy)undecyl) methacrylate) (PEO‐b‐PMA(11CB)) was prepared by atom transfer radical polymerization (ATRP) using CuCl/1,1,4,7,10,10‐hexamethyltriethylenetriamine as a catalyst system. An azobenzene block of poly(11‐[4‐(4‐butylphenylazo)phenoxyl]undecyl methacrylate) was then introduced into the copolymer sequence by a second ATRP to synthesize the corresponding triblock copolymer PEO‐b‐PMA(11CB)‐b‐PMA(11Az). Both of the amphiphilic block copolymers had well‐defined structures and narrow molecular‐weight distributions, and exhibited a smectic liquid‐crystalline phase over a wide temperature range.