首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Knowledge of the strength of the metal–ligand bond breaking and formation is fundamental for an understanding of the thermodynamics underlying many important stoichiometric and catalytic organometallic reactions. Quantum chemical calculations at different levels of theory have been used to investigate heterolytic Fe―C bond energies of para‐substituted benzyldicarbonyl(η5‐cyclopentadienyl)iron, p‐G‐C6H4CH2Fp [1, G = NO2, CN, COMe, CO2Me, CF3, Br, Cl, F, H, Me, MeO, NMe2; Fp = (η5‐C5H5)(CO)2Fe], and para‐substituted α‐cyanobenzyldicarbonyl(η5‐cyclopentadienyl)iron, p‐G‐PANFp [2, PAN = C6H4CH(CN)]. The results show that BP86 and TPSSTPSS can provide the best price/performance ratio and more accurate predictions in the study of ΔHhet(Fe―C)'s. The good linear correlations [r = 0.98 (g, 1a), 0.99 (g, 2b)] between the substituent effects of heterolytic Fe―C bond energies [ΔΔHhet(Fe―C)'s] of series 1 and 2 and the differences of acidic dissociation constants (ΔpKa) of C―H bonds of p‐G‐C6H4CH3 and p‐G‐C6H4CH2CN imply that the governing structural factors for these bond scissions are similar. And the excellent linear correlations [r = ?1.00 (g, 1c), ?0.99 (g, 2d)] between ΔΔHhet(Fe―C)'s and the substituent σp? constants show that these correlations are in accordance with Hammett linear free energy relationships. The polar effects of these substituents and the basis set effects influence the accuracy of ΔHhet(Fe―C)'s. ΔΔHhet(Fe―C)'s(1, 2) follow the Capto‐dative Principle. The detailed knowledge of the factors that determine the Fp―C bond strengths would greatly aid in understanding reactivity patterns in many processes. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

2.
A sulphur based chemical, ([(NH4)2S/(NH4)2SO4]) to which S has been added not previously reported for the treatment of (111)A InAs surfaces is introduced and benchmarked against the commonly used passivants Na2S·9H2O and ((NH4)2S + S), using Auger electron spectroscopy (AES) and X-ray photoelectron spectroscopy (XPS). It has been found that the native oxide layer present on the InAs surface is more effectively removed when treated with ([(NH4)2S/(NH4)2SO4] + S) than with ((NH4)2S + S) or Na2S·9H2O. AES depth profiles of the sulphurized layers revealed the formation of a thin (less than 8.5 nm) In–S surface layer for both ((NH4)2SO4 + S) and ([(NH4)2S/(NH4)2SO4] + S) treatments. No evidence for the formation of As―S bonds was found. Treatment with ([(NH4)2S/(NH4)2SO4] + S) also affected a significant improvement compared to the more established sulphur treatments in the surface morphology of the otherwise poor as-received n-InAs (111)A surface.  相似文献   

3.
This paper describes the synthesis and characterization of organic–inorganic layered perovskite compounds, (CnH2n+1NH3)2PbI4 (n=4, 5, 7, 8 and 9). The effect of the number of carbon atoms on luminescence properties has been examined. Thin films of microcrystalline (CnH2n+1NH3)2PbI4 fabricated by spin-coating are highly oriented, with the c-axis perpendicular to the substrate surface. Temperature-dependent optical absorption spectra reveal that (CnH2n+1NH3)2PbI4 films (n=4, 7, 8 and 9) show the structural phase transitions. The excitonic structures of (CnH2n+1NH3)2PbI4 vary with the number of carbon atoms of the alkyl chain length. At low temperatures below 100 K, the lowest-energy free-exciton band of (CnH2n+1NH3)2PbI4 (n=7, 8 and 9) split into three fine-structure levels. In contrast to (CnH2n+1NH3)2PbBr4 films, (CnH2n+1NH3)2PbI4 (n=7, 8 and 9) shows no triplet exciton emission, but it shows the Stokes-shifted emission from bound excitons.  相似文献   

4.
The temperature dependence of the 14N nuclear quadrupole resonance frequency in hexamethylphosphorus traimide, P[N(CH3)2]3, and hexamethylphosphoric triamide, O=P[N(CH3)2]3, has been studied between 77 K and the melting points. Values for the torsional oscillation frequencies v t and the empirical parameter b, a function of v t and the associated moment of inertia I, and of the volume-dependence parameter α, are reported. The values are consistent with previously reported values for thiourea, S=C(NH2)2.  相似文献   

5.
A simple method of localizing molecular orbitals on polyatomic molecular fragments is proposed; the method allows one to separate orbitals in the structural units of extended molecules. The method is illustrated by semiempirical calculations of the binuclear bridged complexes [(NH3)5Ru-py-(C2H2)n- py-Ru(NH3)5]5+ (n = 0,1,2,3). One of possible application is construction of orbital bases for calculations by the configuration interaction method with limited sets of active MOs. Translated from ZhurnalStruktumoi Khimii, Vol. 39, No. 4, pp. 571–578, July–August, 1998.  相似文献   

6.
Single crystals of [(R)-C5H14N2][Cu(SO4)2(H2O)4]·2H2O (1) were grown through the slow evaporation of a solution containing H2SO4, (R)-C5H12N2 and CuSO4·5H2O. These crystals spontaneously transform to [(R)-C5H14N2]2[Cu(H2O)6](SO4)3 (2) over the course of four days at room temperature. The same single crystal on the same mounting was used for the determination of the structure of (1) and the unit cell determination of (2). A second single crystal of the transformed batch has served for the structural determination of (2). Compound 1 crystallizes in the noncentrosymmetric space group P21 (No. 4) and consists of trimeric [Cu(SO4)2(H2O)4]2? anions, [(R)-C5H14N2]2+ cations and occluded water molecules. Compound 2 crystallizes in P21212 (No. 18) and contains [Cu(H2O)6]2+ cations, [SO4]2? anions and occluded water molecules. The thermal decompositions of compounds 1 and 2 were studied by thermogravimetric analyses and temperature-dependent X-ray diffraction.  相似文献   

7.
The FT-Raman spectrum of cupferron, [PhN2O2]NH4 and the micro-Raman spectra of the new corresponding cobalt(II) cupferronato complexes, CoL2A2, L = PhN2O2, a = H2O, MeOH, o-C6H4(NH2)2, p-C6H4(NH2)2 and CoL2A, a = (-C6H4NH2-p)2 were recorded and discussed. All the complexes show a Raman band at about 1302 cm1 and the characteristic v(N-N) and δ(ONNO) modes of the anionic ligand. the vibrational analysis of the title compounds reveals the electron delocalisation over the N-nitroso-N-hydroxylaminato (ONNO) unit, as well as the bidentate coordination of the cupferronato ligand to the metal center through the oxygen atoms.  相似文献   

8.
We show that dopant impurities can be introduced in a controlled, site-specific manner into pre-deposited semiconducting boron carbide films. B―N bond formation has been characterized by X-ray photoelectron spectroscopy for semiconducting B10C2Hx films exposed to vacuum ultraviolet photons in the presence of NH3. Core level photoemission data indicate that B―NH2 bonds are formed at B sites bonded to other boron atoms (B―B), and not at boron atoms adjacent to carbon atoms (B―C) or at carbon atom sites. Nitridation obeys diffusion-limited kinetics. These results indicate that dopant species can be introduced in a controlled, site-specific manner into pre-deposited boron carbide films, as opposed to currently required dopant incorporation during the deposition process.  相似文献   

9.
The electron paramagnetic resonance of VO2+ ion impurities has been studied in certain crystalline solids at ~ 9.45 GHz. VO2+ shows an isotropic spectra in Mg(ClO4)2·6H2O, RbBr, RbI, CsCl, thiourea, NH4HC2O4·12H2O and urea oxalate at room temperature, and has preferential orientation in MgSeO4·6H2O, KHC2O4, Rb2SO4 and (NH4)2M″(SeO4)2·6H2O (M″ = Zn, Co) single crystals. The line broadening of the EPR spectra of VO2+ in (NH4)2Co(SeO4)2·6H2O observed on cooling the crystal is explained on the basis of host spin lattice relaxation narrowing. The EPR spectra have been analysed and the spin-Hamiltonian parameters evaluated.  相似文献   

10.
Complexes of the type (n-C n H2n +1NH3)2SnX6 (0n 4 and X=Cl or Br) have been investigated with a variety of physico-chemical techniques. The structural phase transitions were found in some of these complexes. The temperature dependence of the Mössbauer spectral absorption area for (C2H5NH3)2SnCl6 and (C2H5NH3)2SnBr6 changed sharply at phase transition temperatures. The temperature dependences for (n-C4H9NH3)2SnCl6 and (n-C4H9NH3)2SnBr6 decreased gradually with an increase in temperature. The correlation between the temperature dependence of the spectral absorption area and the motion of n-C n H2n+1NH3 + ions is discussed.  相似文献   

11.
The reduction mechanism of Ni2+ into Ni particles using different precursors such as NiCl2 solution, NiO powder and Ni[(NH3)6]Cl2 complex has been established. Different particle sizes can be designed from these precursors. The smallest crystallite size (12 nm) can be obtained from Ni[(NH3)6]Cl2 complex in the presence of the stabilizing ligand (oleic acid). The field-cooled (FC) and zero-field-cooled (ZFC) magnetization of Ni particles obtained from Ni[(NH3)6]Cl2 complex in the temperature range 5–300 K established the ferromagnetic interaction up to 300 K. The magnetization values at three different temperatures 5, 70 and 300 K are 50.2, 49.5 and 45.5 Oe respectively at 3× 104 Oe applied field and such values are less than that of the bulk value. The Curie temperature (T c) decreases slightly with the decrease of particle size. This study will provide guidance in the preparation of metal nanoparticles from different precursors.   相似文献   

12.
DSC and complex impedance studies of the protonic conductor (NH4)4H2(SeO4)3, which undergoes a superionic phase transition of first order at Ts = 378 K show that the activation energy of ionic conductivity d(lg σ)/dt and the ordering enthalpy ΔCp of the crystal are proportional: d(lg σ)/dT = XΔCp/RTs + const, as found for MAg4I5 crystals undergoing a second-order superionic phase transition. Thus the short-range order environment of the species involved in fast-ion transport plays the main role in the superionic phase transition. This is also supported by the value of the entropy change at Ts, ΔS = 43 J/mole·K. A new metastable phase was found to be induced on heating the (NH4)4H2(SeO4)3 crystal above Ts.  相似文献   

13.
An effective inversion-rotation Hamiltonian has been developed for NH3 which avoids the necessity of having to include high powers of the inversion motion coordinate in the Taylor expansions of the potential energy and the inverse moment of inertia tensor. This nonrigid bender Hamiltonian describes the centrifugal distortion and the Coriolis interactions in the ground and excited inversion states. It also describes the inversion doublings in the ground and excited vibration-inversion states of ammonia. A least-squares procedure that includes the numerical integration of the Schrödinger wave equation has been used to determine the harmonic force field and the double-minimum inversion potential function for (14NH3, 15NH3) and for (14ND3 and 14NT3).The anomalous rotational dependence of the inversion doublings in the (±l) components of the v4 = 1 state of 14NH3 has been explained by the Coriolis interactions between v2=1, v4 = 1, v2 = 2, v2 = 1, v4 = 1, and v2 = 3 vibration-inversion states.  相似文献   

14.
Room temperature EPR spectra of (NH4)2SO4 doped K2SO4 monocrystals irradiated with x-rays show the presence of NH3 + radicals. The EPR parameters areg ‖=2.0037 andg ⊥ = 2.0068;14NA XX=13.75;A YY=24.5;A ZZ=25.5 gauss;1HA XX=A YY=22 andA ZZ=25 gauss. From the14N and1H coupling constants it has been inferred that at room temperature the planar NH3 + radical undergoes rotation about theC 3 axis which corroborates with the equivalence of the protons, but the radical itself is in an asymmetric crystal field environment. The 77K spectra indicate a considerable reduction in the motion of the radical with the free motion almost completely stopped. Part of Ph.D. work of the second author  相似文献   

15.
A detailed effects of catalyst X (X?=?H2O, (H2O)2, NH3, NH3···H2O, H2O···NH3, HCOOH and H2SO4) on the HO4H → O3?+?H2O reaction have been investigated by using quantum chemical calculations and canonical vibrational transition state theory with small curvature tunnelling. The calculated results show that (H2O)2-catalysed reactions much faster than H2O-catalysed one because of the former bimolecular rate constant larger by 2.6–25.9 times than that of the latter one. In addition, the basic H2O···NH3 catalyst was found to be a better than the neutral catalyst of (H2O)2. However it is marginally less efficient than the acidic catalysts of HCOOH, and H2SO4. The effective rate constant (k't) in the presence of catalyst X have been assessed. It was found from k't that H2O (at 100% RH) completely dominates over all other catalysts within the temperature range of 280–320?K at 0?km altitude. However, compared with the rate constant of HO4H → H2O?+?O3 reaction, the k eff values for H2O catalysed reaction are smaller by 1–2 orders of magnitude, indicating that the catalytic effect of H2O makes a negligible contribution to the gas phase reaction of HO4H → O3?+?H2O.

Highlights

  • A detailed effects of catalyst of H2O, (H2O)2, NH3, NH3···H2O, H2O···NH3, HCOOH and H2SO4 on the HO4H → O3?+?H2O reaction has been performed.

  • From energetic viewpoint, H2SO4 exerts the strongest catalytic role in HO4H → O3?+?H2O reaction as compared with the other catalysts.

  • At 0 km altitude H2O (at 100% RH) completely dominates over all other catalysts within the temperature range of 280–320 K.

  • HO4H → H2O?+?O3 reaction with H2O cannot be compete with the reaction without catalyst, due to the fact that the effective rate constants in the presence of H2O are smaller.

  相似文献   

16.
ABSTRACT

The connection of 12 s = ½ closo-azadodecaborane radical units (NB11H11?), where a hydrogen atom is removed from the nitrogen atom, produces a supericosahedron [(NB11H6?)12](S), S being the total spin of the system. This work describes the study of the low-lying energy spin-projected states of this supericosahedron with two different geometrical arrangements, each nitrogen atom pointing (1) inwards or (2) outwards with respect to radial axes. These spin-projected states are mapped into a Heisenberg spin Hamiltonian, thus allowing the determination of coupling constants between magnetic sites. The eigenvalues of this model Hamiltonian then predict the ground spin state and the corresponding combinations of spin orientations of the magnetic centres. We show that the energy minimum in the [(Nin/outB11H6?)12](S) systems corresponds to a high-spin S = 6 state.  相似文献   

17.
Four novel dmit complexes: [(C2H5)4N][Ni (dmit)2], [(C3H7)4N][Ni(dmit)2], [(C2H5)4N][Au(dmit)2] and [(C3H7)4N][Au(dmit)2], abbreviated as EtNi, PrNi, EtAu, and PrAu, were synthesized. The third-order nonlinear optical properties of them in acetonitrile solutions were investigated by using the Z-scan technique with 20 ps pulses width at 1064 nm. When the on-axis irradiance at focus I 0 was 5.025 GW/cm2, the nonlinear refraction coefficient n 2, the third-order nonlinear susceptibility χ (3), the molecular second-order hyperpolarizability γ of the four types of material were obtained with subject to Z-scan curves, and these indexes were with the magnitudes of 10−18 m2/W, 10−13 esu, and 10−31 esu, respectively. The nonlinear absorption coefficient β of Ni samples had the 10−12 m/W scale. The impact of different metals and cations on the third-order nonlinear optical properties of materials was analyzed. Through the derivation, the result suggests that these dmit complexes are promising candidates for applications to nonlinear optical devices manufacture in the near-infrared waveband.  相似文献   

18.
New triethylammonium salts: [(C2H5)3NH]SbCl6 (TCA) and [(C2H5)3NH]SbCl6·1/2[(C2H5)3NH]Cl (TCAT) have been synthesized. The compounds crystallise in monoclinic symmetry: space groups P21/n and P21/c, for TCA at 293 K and TCAT at 100 K, respectively. The crystal structure of [(C2H5)3NH]SbCl6 consists of discrete ionic pairs—triethylammonium cations and hexachloroantimonate anions—linked via the bifurcated N-H?Cl hydrogen bonds. The crystal structure of [(C2H5)3NH]SbCl6·1/2[(C2H5)3NH]Cl is composed of three symmetrically independent triethylammonium cations, chlorine anion and two symmetrically independent hexachloroantimonate anions. TCA undergoes a structural phase transition at 336 K (on heating) into the orthorhombic C222 space group, whereas TCAT reveals a structural phase transition at 332 K. The phase transitions are of the first order type. TCA shows a ferroelastic domain structure below 336 K. Differential scanning calorimetry, dilatometric, dielectric dispersion and Raman scattering measurements have been used to study the phase transition mechanisms in these triethylammonium salts.  相似文献   

19.
《Physics letters. A》2020,384(21):126533
Molybdenum trioxide (MoO3) with α-phase is a promising material for gas sensing because of its high sensitivity, fast response and thermodynamic stability. To probe the mechanism of superior gas detection ability of MoO3 monolayer, the adsorption and diffusion of H2, H2S, NH3, CO and H2O molecules on two-dimensional (2D) MoO3 layer are studied via density functional theory (DFT) calculations. Based on calculated adsorption energies, density of states, charge transfer, diffusion barriers and diffusion coefficient, MoO3 shows a superior sensitive and fast response to H2 and H2S than CO, NH3, H2O, which is consistent with experimental conclusions. Moreover, the response of MoO3 to H2S and H2 will be obviously enhanced at high gas concentration, and the incorporation of H2 and H2S results in an obvious increasing in DOS near Fermi level. Our analysis provides a conceptual foundation for future design of MoO3-based gas sensing materials.  相似文献   

20.
To study the fate of a molecular di‐μ‐oxo‐bridged trinuclear ruthenium complex, [(NH3)5Ru–O–Ru(NH3)4–O–Ru(NH3)5]6+, also known as Ru‐red, during the electro‐driven water oxidation reaction, electrochemical in situ surface enhanced Raman spectroscopy (SERS) investigations have been conducted on an electrochemically roughened gold surface in acidic condition. It was previously described that on a basal plane pyrolitic graphite electrode in 0.1 M H2SO4 aqueous solution, Ru‐red undergoes one electron oxidative conversion into a stable higher oxidation state ruthenium complex, Ru‐brown, at <1.0 V (vs normal hydrogen electrode (NHE)), and this leads to water oxidation and dioxygen release, but the fate of Ru‐red during electrochemistry was not studied in much detail. In this investigation, Ru‐red dispersed in acid electrolyte and immobilized on a roughened gold electrode without Ru‐red in solution has been subjected to anodic controlled potential experiments, and in situ SERS was carried out at various potentials in succession. The electrochemical SERS data obtained for Ru‐red are also compared with in situ SERS results of an electrodeposited ruthenium oxide thin film on the Au disk. Our study suggests that on a gold electrode in sulfuric acid solution containing Ru‐red, one electron oxidative conversion of Ru‐red to a higher oxidation state ruthenium compound, Ru‐brown, occurs at ca. 0.74 V (vs NHE), as supported by the electrochemical in situ SERS experiments. Moreover, at higher potentials and on Au disk, the Ru‐red / Ru‐brown are not stable and slowly decompose or electro‐oxidize leading to deactivation of the tri‐ruthenium catalytic system in acidic medium. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号