首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have investigated the effects of screened Coulomb (Yukawa) potentials on the bound 1,3D states and the doubly excited 1,3 De resonance states of helium atom using highly correlated exponential basis functions. The Density of resonance states are calculated using stabilization method. Highly correlated exponential basis functions are used to consider the correlation effect between the charged particles. A total of 18 resonances (nine each for 1 De and 3 De states) below the n = 2 He + threshold has been calculated. For each spin states, this includes four members in the 2pnp series, three members in the 2snd series, and two members in 2pnf series. The resonance energies and widths for various screening parameters ranging from infinity to a small value for these 1,3 De resonance states are reported along with the bound‐excited 1s3d 1,3 D state energies. Overall behavior of the spectral profile of 1s3d 1D state of helium atom due to electron‐electron and electron‐nucleus screening are also presented. Accurate resonance energies and widths are also reported for He in vacuum. © 2009 Wiley Periodicals, Inc. Int J Quantum Chem, 2010  相似文献   

2.
Lanthanide trihalide molecules LnX3 (X = F, Cl, Br, I) were quantum chemically investigated, in particular detail for Ln = Lu (lutetium). We applied density functional theory (DFT) at the nonrelativistic and scalar and SO‐coupled relativistic levels, and also the ab initio coupled cluster approach. The chemically active electron shells of the lanthanide atoms comprise the 5d and 6s (and 6p) valence atomic orbitals (AO) and also the filled inner 4f semivalence and outer 5p semicore shells. Four different frozen‐core approximations for Lu were compared: the (1s2–4d10) [Pd] medium core, the [Pd+5s25p6 = Xe] and [Pd+4f14] large cores, and the [Pd+4f14+5s25p6] very large core. The errors of Lu? X bonding are more serious on freezing the 5p6 shell than the 4f14 shell, more serious upon core‐freezing than on the effective‐core‐potential approximation. The Ln? X distances correlate linearly with the AO radii of the ionic outer shells, Ln3+‐5p6 and X?np6, characteristic for dominantly ionic Ln3+‐X? binding. The heavier halogen atoms also bind covalently with the Ln‐5d shell. Scalar relativistic effects contract and destabilize the Lu? X bonds, spin orbit coupling hardly affects the geometries but the bond energies, owing to SO effects in the free atoms. The relativistic changes of bond energy BE, bond length Re, bond force k, and bond stretching frequency vs do not follow the simple rules of Badger and Gordy (Re~BE~kvs). The so‐called degeneracy‐driven covalence, meaning strong mixing of accidentally near‐degenerate, nearly nonoverlapping AOs without BE contribution is critically discussed. © 2015 Wiley Periodicals, Inc.  相似文献   

3.
The time‐dependent variation perturbation theory (TDVPT) was applied to estimate separately the effect of radial and angular correlations in the doubly excited states of two‐electron systems. Test calculations were performed for the transitions 1s2 : 1Se→2s2 : 1Se for H and 1s2 : 1Sens2 : 1Se (n=2,…,5) for He, Li+, Be2+, and B3+. Transition energies to various doubly excited states were estimated using radially correlated basis sets as well as with basis sets which take care of both radial and angular correlations. Angular correlation is taken care of by incorporating higher angular momentum basis sets in the expansion of the perturbed wave functions. The excitation energy is lower in all the cases, indicating the correct behavior. Overall improvement of the results is observed when angular correlation is included. The effect of angular correlation, however, diminishes rapidly with increase of the nuclear charge. This has been demonstrated explicitly for the lowest doubly excited transitions in the highly stripped ions Al11+, Si12+, P13+, S14+, and Cl15+. © 1999 John Wiley & Sons, Inc. Int J Quant Chem 76: 99–104, 2000  相似文献   

4.
Treatment of the thioether‐substituted secondary phosphanes R2PH(C6H4‐2‐SR1) [R2=(Me3Si)2CH, R1=Me ( 1PH ), iPr ( 2PH ), Ph ( 3PH ); R2=tBu, R1=Me ( 4PH ); R2=Ph, R1=Me ( 5PH )] with nBuLi yields the corresponding lithium phosphanides, which were isolated as their THF ( 1 – 5Pa ) and tmeda ( 1 – 5Pb ) adducts. Solid‐state structures were obtained for the adducts [R2P(C6H4‐2‐SR1)]Li(L)n [R2=(Me3Si)2CH, R1=nPr, (L)n=tmeda ( 2Pb ); R2=(Me3Si)2CH, R1=Ph, (L)n=tmeda ( 3Pb ); R2=Ph, R1=Me, (L)n=(THF)1.33 ( 5Pa ); R2=Ph, R1=Me, (L)n=([12]crown‐4)2 ( 5Pc )]. Treatment of 1PH with either PhCH2Na or PhCH2K yields the heavier alkali metal complexes [{(Me3Si)2CH}P(C6H4‐2‐SMe)]M(THF)n [M=Na ( 1Pd ), K ( 1Pe )]. With the exception of 2Pa and 2Pb , photolysis of these complexes with white light proceeds rapidly to give the thiolate species [R2P(R1)(C6H4‐2‐S)]M(L)n [M=Li, L=THF ( 1Sa , 3Sa – 5Sa ); M=Li, L=tmeda ( 1Sb , 3Sb – 5Sb ); M=Na, L=THF ( 1Sd ); M=K, L=THF ( 1Se )] as the sole products. The compounds 3Sa and 4Sa may be desolvated to give the cyclic oligomers [[{(Me3Si)2CH}P(Ph)(C6H4‐2‐S)]Li]6 (( 3S )6) and [[tBuP(Me)(C6H4‐2‐S)]Li]8 (( 4S )8), respectively. A mechanistic study reveals that the phosphanide–thiolate rearrangement proceeds by intramolecular nucleophilic attack of the phosphanide center at the carbon atom of the substituent at sulfur. For 2Pa / 2Pb , competing intramolecular β‐deprotonation of the n‐propyl substituent results in the elimination of propene and the formation of the phosphanide–thiolate dianion [{(Me3Si)2CH}P(C6H4‐2‐S)]2?.  相似文献   

5.
The development of selenophene‐flanked DPP (SeDPP) based copolymers, especially for the ambipolar ones, lags behind other aromatic group flanked DPP‐based polymers. Herein, we report two new ambipolar SeDPP‐based conjugated polymers. One is the alternating polymer PSeDPPFT with normal SeDPP and 3,4‐difluorothiophene units. The other is PSeFDFT , in which the electron acceptor unit is replaced by a new SeDPP derivative, referred as to half‐fused SeDPP. The more planar structure of half‐fused SeDPP endows the backbone of PSeFDFT with good rigidity and planarity. Both polymers exhibit ambipolar transporting properties in air. The PSeFDFT based field‐effect transistors (FETs) display higher and more balanced ambipolar properties with μhave of 0.27 cm2·V–1·s–1, μeave of 0.18 cm2·V–1·s–1, and μhave/μeave of 1.5 than those of PSeDPPFT (μhave = 0.11 cm2·V–1·s–1, μeave = 0.042 cm2·V–1·s–1, and μh/μe = 2.6). This is attributed to the more planar structure, lower LUMO level, higher HOMO level, and better interchain packing orientations of PSeFDFT by comparing with PSeDPPFT . Therefore, a new molecular design strategy to modulate the hole and electron transporting properties is proposed for conjugated D‐A polymers.  相似文献   

6.
With the introduction of the concept of the iso‐spectrum‐level series, a linear relationship is found between the first differences of the ionization potential of excited states and nuclear charge Z along an iso‐spectrum‐level series, and the ionization potential of excited states of Be‐like sequence are studied systematically on the basis of the weakest bound electron potential model theory. The expression of nonrelativistic ionization potential is derived from the weakest bound electron potential model theory, and relativistic effects are included by using a fourth‐order polynomial in Z. As a demonstration, the ionization potentials of [He]2s2p 3P, [He]2s3s 1S0, [He]2s3p 1P, [He]2s3d 1D2, and [He]2s4d 1D2 series for a range of Be‐like sequence from Z = 4–23 are calculated. The results are compared with the experimental data and the recent sophisticated ab initio results. © 2003 Wiley Periodicals, Inc. Int J Quantum Chem 93: 344–350, 2003  相似文献   

7.
A detailed molecular orbital (MO) analysis of the structure and electronic properties of the great variety of species in lithium–ammonia solutions is provided. In the odd‐electron, doublet states we have considered: e?@(NH3)n (the solvated electron, likely to be a dynamic ensemble of molecules), the Li(NH3)4 monomer, and the [Li(NH3)4+ ? e?@(NH3)n] ion‐pairs, the Li 2s electron enters a diffuse orbital built up largely from the lowest unoccupied MOs of the ammonia molecules. The singly occupied MOs are bonding between the hydrogen atoms; we call this stabilizing interaction H

  相似文献   


8.
Films of linear and branched oligomer wires of Fe(tpy)2 (tpy=2,2′:6′,2′′‐terpyridine) were constructed on a gold‐electrode surface by the interfacial stepwise coordination method, in which a surface‐anchoring ligand, (tpy? C6H4N?NC6H4? S)2 ( 1 ), two bridging ligands, 1,4‐(tpy)2C6H4 ( 3 ) and 1,3,5‐(C?C? tpy)3C6H3 ( 4 ), and metal ions were used. The quantitative complexation of the ligands and FeII ions was monitored by electrochemical measurements in up to eight complexation cycles for linear oligomers of 3 and in up to four cycles for branched oligomers of 4 . STM observation of branched oligomers at low surface coverage showed an even distribution of nanodots of uniform size and shape, which suggests the quantitative formation of dendritic structures. The electron‐transport mechanism and kinetics for the redox reaction of the films of linear and branched oligomer wires were analyzed by potential‐step chronoamperometry (PSCA). The unique current‐versus‐time behavior observed under all conditions indicates that electron conduction occurs not by diffusional motion but by successive electron hopping between neighboring redox sites within a molecular wire. Redox conduction in a single molecular wire in a redox‐polymer film has not been reported previously. The analysis provided the rate constant for electron transfer between the electrode and the nearest redox‐complex moiety, k1 (s?1), as well as that for intrawire electron transfer between neighboring redox‐complex moieties, k2 (cm2 mol?1 s?1). The strong effect of the electrolyte concentration on both k1 and k2 indicates that the counterion motion limits the electron‐hopping rate at lower electrolyte concentrations. Analysis of the dependence of k1 and k2 on the potential gave intrinsic kinetic parameters without overpotential effects: k10=110 s?1, k20=2.6×1012 cm2 mol?1 s?1 for [n Fe 3 ], and k10=100 s?1, k20=4.1×1011 cm2 mol?1 s?1 for [n Fe 4 ] (n=number of complexation cycles).  相似文献   

9.
The variational method with mutilconfiguration interaction wave function is used to obtain the energies, fine structures, and hyperfine structures of high‐lying core‐excited quartet states 1s2lnl' 4Po(m) (m = 1–5) and 1s2pnp 4P(m) (m = 1–5) in Li‐like N4+ and F6+ ions, including the mass polarization and relativistic corrections. Restricted variational method is carried out to extrapolate a better energy. The oscillator strengths, lifetime, wavelengths, fine structure, and hyperfine structure for this system are also investigated to compare with other theoretical and experimental data in the literature. © 2009 Wiley Periodicals, Inc. Int J Quantum Chem, 2010  相似文献   

10.
3‐Methyl‐3‐(3‐pentyl)‐1,2‐dioxetane 1 and 3‐methyl‐3‐(2,2‐dimethyl‐1‐propyl)‐1,2‐dioxetane 2 were synthesized in low yield by the α‐bromohydroperoxide method. The activation parameters were determined by the chemiluminescence method (for 1 ΔH‡ = 25.0 ± 0.3 kcal/mol, ΔS‡ = −1.0 entropy unit (e.u.), ΔG‡ = 25.3 kcal/mol, k1 (60°C) = 4.6 × 10−4s−1; for 2 ΔH‡ = 24.2 ± 0.2 kcal/mol, ΔS‡ = −2.0 e.u., ΔG‡ = 24.9 kcal/mol, k1 (60°C) = 9.2 × 10−4s−1. Thermolysis of 1–2 produced excited carbonyl fragments (direct production of high yields of triplets relative to excited singlets) (chemiexcitation yields for 1: ϕT = 0.02, ϕS ≤ 0.0005; for 2: ϕT = 0.02, ϕS ≤ 0.0004). The results are discussed in relation to a diradical‐like mechanism. © 2001 John Wiley & Sons, Inc. Heteroatom Chem 12:176–179, 2001  相似文献   

11.
High oxidation potential perfluorinated zinc phthalocyanines (ZnFnPcs) are synthesised and their spectroscopic, redox, and light‐induced electron‐transfer properties investigated systematically by forming donor–acceptor dyads through metal–ligand axial coordination of fullerene (C60) derivatives. Absorption and fluorescence spectral studies reveal efficient binding of the pyridine‐ (Py) and phenylimidazole‐functionalised fullerene (C60Im) derivatives to the zinc centre of the FnPcs. The determined binding constants, K, in o‐dichlorobenzene for the 1:1 complexes are in the order of 104 to 105 M ?1; nearly an order of magnitude higher than that observed for the dyad formed from zinc phthalocyanine (ZnPc) lacking fluorine substituents. The geometry and electronic structure of the dyads are determined by using the B3LYP/6‐31G* method. The HOMO and LUMO levels are located on the Pc and C60 entities, respectively; this suggests the formation of ZnFnPc.+–C60Im.? and ZnFnPc.+–C60Py.? (n=0, 8 or 16) intra‐supramolecular charge‐separated states during electron transfer. Electrochemical studies on the ZnPc–C60 dyads enable accurate determination of their oxidation and reduction potentials and the energy of the charge‐separated states. The energy of the charge‐separated state for dyads composed of ZnFnPc is higher than that of normal ZnPc–C60 dyads and reveals their significance in harvesting higher amounts of light energy. Evidence for charge separation in the dyads is secured from femtosecond transient absorption studies in nonpolar toluene. Kinetic evaluation of the cation and anion radical ion peaks reveals ultrafast charge separation and charge recombination in dyads composed of perfluorinated phthalocyanine and fullerene; this implies their significance in solar‐energy harvesting and optoelectronic device building applications.  相似文献   

12.
Ab initio all‐electron computations have been carried out for Ce+ and CeF, including the electron correlation, scalar relativistic, and spin–orbit coupling effects in a quantitative manner. First, the n‐electron valence state second‐order multireference perturbation theory (NEVPT2) and spin–orbit configuration interaction (SOCI) based on the state‐averaged restricted active space multiconfigurational self‐consistent field (SA‐RASSCF) and state‐averaged complete active space multiconfigurational self‐consistent field (SA‐CASSCF) wavefunctions have been applied to evaluations of the low‐lying energy levels of Ce+ with [Xe]4f15d16s1 and [Xe]4f15d2 configurations, to test the accuracy of several all‐electron relativistic basis sets. It is shown that the mixing of quartet and doublet states is essential to reproduce the excitation energies. Then, SA‐RASSCF(CASSCF)/NEVPT2 + SOCI computations with the Sapporo(‐DKH3)‐2012‐QZP basis set were carried out to determine the energy levels of the low‐lying electronic states of CeF. The calculated excitation energies, bond length, and vibrational frequency are shown to be in good agreement with the available experimental data. © 2018 Wiley Periodicals, Inc.  相似文献   

13.
The cathodic reactions in Li–S batteries can be divided into two steps. Firstly, elemental sulfur is transformed into long‐chain polysulfides (S8?Li2S4), which are highly soluble in the electrolyte. Next, long‐chain polysulfides undergo nucleation reaction and convert into solid‐state Li2S2 and Li2S (Li2S4?Li2S) by slow processes. As a result, the second‐step of the electrochemical reaction hinders the high‐rate application of Li–S batteries. In this report, the kinetics of the sulfur/long‐chain‐polysulfide redox couple (theoretical capacity=419 mA h g?1) are experimentally demonstrated to be very fast in the Li–S system. A Li–S cell with a blended carbon interlayer retains excellent cycle stability and possesses a high percentage of active material utilization over 250 cycles at high C rates. The meso‐/micropores in the interlayer are responsible for accommodating the shuttling polysulfides and offering sufficient electrolyte accessibility. Therefore, utilizing the sulfur/long‐chain polysulfide redox couple with an efficient interlayer configuration in Li–S batteries may be a promising choice for high‐power applications.  相似文献   

14.
Asymmetric anionic polymerizations of 7‐cyano‐7‐alkoxycarbonyl‐1,4‐benzoquinone methides ( 1 ) with various alkoxy groups were performed using chiral initiators such as lithium isopropylphenoxide (iPrPhOLi)/(S)‐(–)‐2,2′‐isopropylidene‐bis(4‐phenyl‐2‐oxazoline) ((–)‐PhBox) and lithium isopropylphenoxide (iPrPhOLi)/(–)‐sparteine ((–)‐Sp) to investigate the effect of the alkoxy groups of alkoxycarbonyl substituent in the monomers 1 and chiral ligands of chiral initiators on the control of chiral center in the formation of polymers. Molar optical rotation values of the polymers were significantly dependent upon alkoxy groups, and the polymers with higher molar optical rotation were obtained in monomers with primary alkoxy groups. The asymmetric anionic oligomerizations of the quinone methides having methoxy( 1a ), ethoxy( 1b ), and n‐propoxy( 1c ) groups with chiral initiators were carried out. Both 1‐mers and 2‐mers were isolated and their optical resolutions were performed to determine the extent of stereocontrol. High stereoselectivity was observed at the propagation reaction, but not at the initiation reaction. The effect of the counterion on the control of chiral center in the formation of the polymer was investigated in the asymmetric anionic polymerizations of 1b with iPrPhOM(M = Li, Na, K)/(–)‐Sp and iPrPhOM(M = Li, Na, K)/(–)‐PhBox initiators and discussed. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

15.
Interactions between noble metals and rare gases have become an interesting topic over the last few years. In this work, a computational study of the open‐shell (d10s1) and closed‐shell (d10s and d10s2) noble metals (M = Cu, Ag, and Au) with three heaviest rare gas atoms (Rg = Kr, Xe, and Rn) has been performed. Potential energy curves based on ab initio [MP2, MP4, QCISD, and CCSD(T)] and DFT functionals (M06‐2X and CAM‐B3LYP) were obtained for ionic and neutral AuXe complexes. Dissociation energies indicate that neutral metals have the lowest and cationic metals have the highest affinities for interaction with rare gas atoms. For the same metals, there is a continuous increase in dissociation energies (De) from Kr to Rn. The nature of bonding and the trend of De and equilibrium bond lengths (Re) have been interpreted by means of quantum theory of atoms in molecules, natural bond orbital, and energy decomposition analysis. © 2013 Wiley Periodicals, Inc.  相似文献   

16.
Perylene diimides (PDIs) and their derivatives are excellent semiconductors, while conjugated polymers based on PDIs have limited applications because of their low electron mobility (μe) derived from low molecular weight. The reported maximum number‐average molecular weight (Mn) of related polymers is only 21 kDa because PDIs have very poor solubility due to strong π–π stacking of their big planar conjugated cores. Herein, it is found that suitable semi‐perfluoroalkyl groups could enhance the solubility of PDIs significantly, and a series of semi‐perfluoroalkyl modified conjugated polymers with high molecular weight and electron mobility were synthesized. The maximum Mn reaches 94.8 kDa [P(4CF8CH‐PDI‐T2)HW]. In their space‐charge‐limited current (SCLC) devices, all polymers exhibit typical characters of electron transporting semiconductors, and the highest μe is up to 8.40 × 10−3 cm2 V−1 s−1 [P(4CF8CH‐PDI‐T2)HW], which is similar as that of widely used electron transporting semiconductor PC61BM (6.41 × 10−3 cm2 V−1 s−1). © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 116–124  相似文献   

17.
目的:建立刺激胰岛素分泌的新型降糖药物(-)-2 (S)-苄基-4-酮-4-(顺式-全氢化异吲哚-2-基)丁酸钙对映体的HPLC拆分方法。方法:采用Sumichiral OA-3300手性柱(250 × 4.6 mm I.D., 5 μm), 柱温35℃,以0.05 mol·L-1醋酸铵的甲醇溶液为流动相,检测波长为210 nm。结果:本品两对映体在22分钟内实现良好分离,分离度达3以上,S-异构体分别在0.028 ~ 5.6 μg mL-1和0.03 ~ 6.0 μg mL-1范围内线性关系良好,回归方程分别为:Y=1.32×103x-2.54 (r=0.9997)和Y=1.15×103x-1.78 (r=0.9998),最低检测限分别为0.15 ng和0.10 ng,方法精密度RSD低于1.0% (n=5)。结论:建立的对映体分离方法可用于本品光学异构体的质量控制。  相似文献   

18.
Electron‐transporting organic semiconductors (n‐channel) for field‐effect transistors (FETs) that are processable in common organic solvents or exhibit air‐stable operation are rare. This investigation addresses both these challenges through rational molecular design and computational predictions of n‐channel FET air‐stability. A series of seven phenacyl–thiophene‐based materials are reported incorporating systematic variations in molecular structure and reduction potential. These compounds are as follows: 5,5′′′‐bis(perfluorophenylcarbonyl)‐2,2′:5′,‐ 2′′:5′′,2′′′‐quaterthiophene ( 1 ), 5,5′′′‐bis(phenacyl)‐2,2′:5′,2′′: 5′′,2′′′‐quaterthiophene ( 2 ), poly[5,5′′′‐(perfluorophenac‐2‐yl)‐4′,4′′‐dioctyl‐2,2′:5′,2′′:5′′,2′′′‐quaterthiophene) ( 3 ), 5,5′′′‐bis(perfluorophenacyl)‐4,4′′′‐dioctyl‐2,2′:5′,2′′:5′′,2′′′‐quaterthiophene ( 4 ), 2,7‐bis((5‐perfluorophenacyl)thiophen‐2‐yl)‐9,10‐phenanthrenequinone ( 5 ), 2,7‐bis[(5‐phenacyl)thiophen‐2‐yl]‐9,10‐phenanthrenequinone ( 6 ), and 2,7‐bis(thiophen‐2‐yl)‐9,10‐phenanthrenequinone, ( 7 ). Optical and electrochemical data reveal that phenacyl functionalization significantly depresses the LUMO energies, and introduction of the quinone fragment results in even greater LUMO stabilization. FET measurements reveal that the films of materials 1 , 3 , 5 , and 6 exhibit n‐channel activity. Notably, oligomer 1 exhibits one of the highest μe (up to ≈0.3 cm2 V?1 s?1) values reported to date for a solution‐cast organic semiconductor; one of the first n‐channel polymers, 3 , exhibits μe≈10?6 cm2 V?1 s?1 in spin‐cast films (μe=0.02 cm2 V?1 s?1 for drop‐cast 1 : 3 blend films); and rare air‐stable n‐channel material 5 exhibits n‐channel FET operation with μe=0.015 cm2 V?1 s?1, while maintaining a large Ion:off=106 for a period greater than one year in air. The crystal structures of 1 and 2 reveal close herringbone interplanar π‐stacking distances (3.50 and 3.43 Å, respectively), whereas the structure of the model quinone compound, 7 , exhibits 3.48 Å cofacial π‐stacking in a slipped, donor‐acceptor motif.  相似文献   

19.
Excited‐state ionization potentials for boron‐like sequence with Z = 5–19 are studied systematically, using the weakest bound electron potential model theory (WBEPM theory) and iso‐spectrum‐level series conception. Nonrelativistic ionization energy is derived from the theory. Relativistic effects are included in the Breit–Pauli approximation. Comparison of the calculated excited‐state ionization potential with available experimental data is carried out for 1s22s22p 2P, 1s22s23s 2S1/2, 1 s22s23p 2P, 1s22s23d 2D5/2, 1s22s24d 2D5/2, 1s22s25d 2D5/2, and 1s22s26d 2D5/2 series. The present results depart from experimental results by no more than 0.133 eV for all 81 results for which experimental data are available. © 2004 Wiley Periodicals, Inc. Int J Quantum Chem, 2004  相似文献   

20.
A synthetic route to enantiomerically pure (1R,2S)‐1‐phenylphospholane‐2‐carboxylic acid ( 1 ), which is a phosphorus analogue of proline, has been established. A key step is the deprotonation–carboxylation of the 1‐phenylphospholane borane complex 3 by using sBuLi/1,2‐dipiperidinoethane (DPE). Configurational stability of the key intermediate, the amine‐coordinated α‐phosphinoalkyllithium borane complex 4 , was investigated by employing lithiodestannylation–carboxylation of both diastereomers of the 1‐phenyl‐2‐trimethylstannylphospholane borane complex 7 in the presence of several kinds of amines, and as a result, 4 was found to be configurationally labile even at ?100 °C. The key intermediate, the DPE‐coordinated trans‐1‐phenyl‐2‐phospholanyllithium borane complex 9 , was isolated, and the structure was identified by X‐ray crystal structure analysis. This is the first X‐ray crystal structure determined for an α‐monophosphinoalkyllithium borane complex. Remarkably, the alkyllithium complex is monomeric and tricoordinate at the lithium center with a slightly pyramidalized environment, and the existence of a Li? C bond (2.170 Å) has been confirmed. Moreover, 1H–7Li HOESY and 6Li NMR analyses suggested the structure of 9 in solution as well as the existence of an equilibrium between 9 , its cis isomer, and the ion pair 8 at room temperature, which was extremely biased towards 9 at ?100 °C. Finally, 1 was used as a chiral ligand in a palladium‐catalyzed allylic substitution, and the desired product was obtained in high yield with good enantioselectivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号