首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sulfur‐containing polyisobutylene (PIB)‐based polyurethane nanocomposite (PIBs‐PU/NC) was synthesized using HO? CH2CH2? S? PIB? S? CH2CH2? OH for the soft segment, conventional hard segments of MDI and BDO, and organically modified montmorillonite (OmMMT) nanolayers. The properties of PIBs‐PU/NC containing 72.5% PIB and 0.5% OmMMT were studied and contrasted with unmodified PIBs‐PU. PIBs‐PU/NC produces colorless optically clear films exhibiting enhanced tensile strength, elongation, oxidative–hydrolytic stability, and creep resistance relative to that of PIBs‐PU. FTIR spectroscopy indicates H bonded S atoms between soft and hard segments, and OmMMT nanolayers. DSC and XRD suggest randomly dispersed low‐periodicity crystals and urea groups between galleries. We propose that minute amounts of OmMMT nanolayers become covalently attached to polyurethane chains and beneficially affect properties by acting as co‐chain extender/reinforcing filler. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 2760–2765  相似文献   

2.
Calcification of implanted biomaterials is highly undesirable and limits clinical applicability. Experiments were carried out to assess the calcification resistance of polyisobutylene (PIB), PIB‐based polyurethane (PIB‐PU), PIB‐PU reinforced with (CH3)3N+CH2CH2CH2NH2 I?‐modified montmorillonite (PIB‐PU/nc), PIB‐based polyurethane urea (PIB‐PUU), PIB‐PU containing S atoms (PIBS‐PU), PIBS‐PU reinforced with (CH3)3N+CH2CH2CH2NH2 I?‐modified montmorillonite (PIBS‐PU/nc), and poly(isobutylene‐b‐styrene‐b‐isobutylene) (SIBS), relative to that of a clinically widely implanted polydimethylsiloxane (PDMS)–based PU, Elast‐Eon (the “control”). Samples were incubated in simulated body fluid for 28 days at 37°C, and the extent of surface calcification was analyzed by scanning electron microscopy (SEM), atomic force microscopy (AFM), energy‐dispersive X‐ray spectroscopy (EDX), X‐ray photoelectron spectroscopy (XPS), and Fourier‐transform‐infrared (FT‐IR) spectroscopy. Whereas the PDMS‐based PU showed extensive calcification, PIB and PIB‐PU containing 72.5% PIB, ie, a polyurethane whose surface is covered with PIB, were free of calcification. PIBS‐PU and PIB‐PUU, ie, polyurethanes that contain S or urea groups, respectively, were slightly calcified. The amine‐modified montmorillonite‐reinforcing agent reduced the extent of calcification. SIBS was found slightly calcified. Evidently, PIB and materials fully coated with PIB are calcification resistant.  相似文献   

3.
The oxidative/hydrolytic stability of polyurethanes (PUs) containing exclusively polyisobutylene (PIB), or mixed PIB/polytetramethylene oxide (PTMO), or mixed PIB/polyhexamethylene carbonate (PC) soft segments was investigated. The tensile strengths and elongations of various PUs were determined before and after agitating in 35% HNO3 or 20% H2O2/0.1 M CoCl2 solutions and retentions were quantified. The presence of PIB imparts significant oxidative/hydrolytic resistance. The tensile strength and elongation of PUs containing 70% PIB, or those of mixed PIB/PC soft segments with 50% PIB, remained essentially unchanged upon exposure to HNO3; in contrast, PUs containing mixed PIB/PTMO soft segments with 50% PIB underwent significant degradation. The tensile strength of PUs with mixed PIB/PC (60/10%) soft segment increased after exposure to HNO3, most likely because of oxidative crosslinking of PC segments. PIB/PTMO‐ and PIB/PC‐based PUs and commercially available PUs (Elast‐Eon® and Carbothane®) were exposed to H2O2/CoCl2 solutions for up to 14 weeks. Although the experimental PIB/PC‐based PUs exhibited negligible change in mechanical properties and no surface damage, Elast‐Eon® and Carbothane® showed significant surface damage. PIB‐based polyureas and Bionate® were implanted in rats for 4 weeks in vivo, and their biocompatibility was investigated. The biocompatibility of PIB‐based materials was superior to Bionate®. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 2194–2203, 2010  相似文献   

4.
The outstanding hydrolytic and oxidative stabilities of polyisobutylene‐based polyurethanes (PIB‐based PUs) were reported earlier. Herein, we summarize recent investigations aimed at further enhancing hydrolytic‐oxidative stabilities (in terms of resistance to aqueous buffer, nitric acid and CoCl2/H2O2) together with excellent mechanical properties. The purity and dryness of ingredients together with precise NCO/OH stoichiometry (~1.05) are essential to obtain PIB‐based PUs with improved properties. Static and dynamic mechanical properties were optimized by analyzing stress–strain traces, thermal (TGA, DSC) responses, self‐organization (XRD) profiles, and rheological (DMA, creep) information. According to microstructure and surface analyses (AFM, contact angle) annealing increases the segregation of individual segments and increases surface hydrophobicity, which in turn enhances the shielding of hydrolytically oxidatively vulnerable carbamate bonds by inert PIB barriers, and thus significantly improves hydrolytic‐oxidative stability. Annealing does not much affect bulk properties, such as static and dynamic mechanical and thermal properties; however, it increases damping over a wide temperature range. Annealed PIB‐based PU containing 72.5% PIB exhibits outstanding hydrolytic‐oxidative stability together with ~26 MPa tensile strength, ~500% elongation, and ~77 Microshore hardness. PIB‐based PUs are significantly more resistant to hydrolytic and oxidative degradation than ElastEon? E2A, a commercially available PDMS‐based PU, widely used for medical applications. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 532–543  相似文献   

5.
Novel segmented polyurea elastomers containing soft polyisobutylene (PIB) segments were synthesized and characterized. The key ingredient, primary amine‐telechelic PIB oligomers (NH2‐PIB‐NH2) with number average molecular weights of 2500 and 6200 g/mol were synthesized. PIB‐based polyureas were prepared by using various aliphatic diisocyanates and diamine chain extenders with hard segment contents between 9.5 and 46.5% by weight. All copolymers displayed microphase morphologies as determined by dynamic mechanical analysis. Tensile strengths of nonchain‐extended and chain‐extended polyureas showed a linear dependence on the urea hard segment content. PIB‐based polyureas prepared with NH2‐PIB‐NH2 of Mn = 2500 g/mol, 4,4′‐methylendbis(cyclohexylisocyantate), and 1,6‐diaminohexane containing 45% hard segment exhibited 19.5 MPa tensile strength which rose to 23 MPa upon annealing at 150 °C for 12 h. With increasing hard segment content, elongation at break decreased from ~ 450% to a plateau of 110%. The hydrolytic and oxidative stability of PIB‐based polyureas were unprecedented. Although commercial “oxidatively resistant” thermoplastic polyurethanes degraded severely upon exposure to boiling water or concentrated nitric acid, the experimental polyureas survived without much degradation in properties. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 38–48, 2009  相似文献   

6.
Telechelic poly(ether ketone)s (PEKs) and polyisobutylenes (PIBs) were combined to form PIB? PEK? PIB triblock copolymers and (PIB? PEK)n multiblock copolymers via the formation of urea linkages. Monovalent and bivalent amino telechelic PIBs were prepared quantitatively from allyl telechelic PIBs by a newly developed reaction sequence featuring nucleophilic reaction steps. Telechelic PEK? NCO polymers were prepared from the corresponding amino telechelic PEKs via a reaction with diphosgene. The highly reactive PEK? NCO and PIB? NH2 telechelics formed PEK? PIB block copolymers only quantitatively when appropriately reactive primary amino groups were present on the amino telechelic PIBs. The obtained block copolymers were microphase‐separated and featured mostly lamellar structures, as determined by small‐angle X‐ray scattering (SAXS). Temperature‐dependent SAXS measurements revealed ordered polymers in the melt up to 210 °C. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 188–202, 2005  相似文献   

7.
This article reports the facile synthesis of novel terminally and centrally functionalized polyisobutylenes (PIBs) and the detailed characterization of the products by various mass spectrometry techniques. Specifically, H? PIB? CH2? C(OH)CH3? CH2? NHCH3 and [H? PIB? CH2? CH(OH)CH3? CH2]2? NCH3 were synthesized by the quantitative epoxidation of H? PIB? CH2? C(CH3)?CH2 and the subsequent conversion of the resulting epoxide with excess CH3NH2. Quaternization with CH3Cl of these mixtures of secondary and tertiary amines yielded exclusively H? PIB? CH2? C(OCH3)CH3? CH2? N(CH3)2 from the secondary amine, whereas the tertiary (centrally functionalized) amine remained unchanged. Tandem mass spectrometry experiments provided unique insight into the precise connectivity of the functional end groups added to the PIB frame. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 946–958, 2005  相似文献   

8.
The poly(propylene imine) dendrimers DAB‐dendr‐(NH2)8, DAB‐dendr‐(NH2)32, and DAB‐dendr‐(NH2)64 were fully converted with iodomethane to quaternary ammonium ions at both chain ends and branch points and, with less iodomethane, were partially converted to quaternary ammonium ions mainly at end groups. Amidation of the primary amine ends followed by treatment with iodomethane gave the first dendrimers with quaternary ammonium ions only at branch points. After an exchange of iodide counterions for chloride, all of the quaternary ammonium ion dendrimers slightly increased the rate of decarboxylation of 6‐nitrobenzisoxazole‐3‐carboxylate ion in an aqueous solution. Similar quaternary ammonium ion dendrimers with more hydrophobic interiors or more hydrophobic chains on the ends were much more active catalysts for the decarboxylation. © 2001 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 821–832, 2001  相似文献   

9.
We describe the synthesis, characterization, and select properties of a novel polyurethane (PU) prepared using a new polyisobutylene diol, HO‐CH2CH2‐S‐PIB‐S‐CH2CH2‐OH, soft segment and conventional hard segments. The diol is synthesized by terminal functionalization of ally‐telechelic PIB followed by low‐cost thiol‐ene click chemistry. Properties of ‐S‐ containing PU (PIBS‐PU) containing 72.5% PIB were investigated and compared to similar PUs made with HO‐PIB‐OH (PIBO‐PU). Hydrolytic resistance was studied by contact with phosphate‐buffered saline, oxidative resistance by immersing in concentrated HNO3, and metal ion oxidation resistance by exposure to CoCl2/H2O2. Hydrolytic and oxidative resistances of PIBS‐PU and PIBO‐PU are similar and superior to a commercial PDMS‐based PU, Elast‐Eon? E2A. According to 1H NMR spectroscopy the ‐S‐ in PIBS‐PUs remained unchanged upon treatment with HNO3, however, oxidized mainly to ‐SO2‐ by CoCl2/H2O2. Static mechanical properties of PIBS‐PU and PIBO‐PU are similar, except creep resistance of PIBS‐PU is surprisingly superior. The thermal stability of PIBS‐PUs is ~15 °C higher than that of PIBO‐PU. FTIR spectroscopy indicates H bonded S atoms (N‐H…S) between soft and hard segments, which noticeably affect properties. DSC and XRD studies suggest random low‐periodicity crystals dispersed within a soft matrix. Energy dispersive X‐ray spectroscopy–scanning electron microscopy indicates homogeneous distribution of S atoms on PIBS‐PU surfaces. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 1119–1131  相似文献   

10.
Polyisobutylene (PIB)‐based polyurethanes (PUs) exhibit unparalleled hydrolytic‐oxidative‐biologic stability and are melt processible, however, their mechanical (strength) properties are modest mainly due to insufficient H bonds. We posited and demonstrate that the ultimate properties of PIB‐PUs are enhanced, while their melt processibility is maintained, by the judicious introduction of urea linkages, i.e., strong bifurcated H bonds, in the chain. The incorporation of bifurcated H bonds in PIB‐PUs was achieved by using the conventional butane diol chain extender (CE) in combination with controlled amounts of amino alcohol as co‐chain extender (co‐CE). Polyurethanes containing both urethane and urea linkages are polyurethane‐ureas (PUU). Specifically, PIB‐PUUs prepared with PIB‐diol/MDI together with 80/20 mole % butane diol/amino butanol exhibited ~30 MPa tensile strength, ~550% elongation, ~80 Shore A hardness, and ~137 °C flow temperature. Other amino alcohols, i.e., amino ethanol, ‐propanol, and ‐hexanol, were less effective co‐CEs. 1H‐NMR and FT‐IR spectroscopies indicate the presence of bifurcated H bonds in PIB‐PUUs prepared with CE/co‐CE combinations. Characterization by differential scanning calorimetry, thermogravimetric analysis, dynamic mechanical thermal analysis, and creep experiments also suggest bifurcated H bonds in PIB‐PUU. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 2361–2369  相似文献   

11.
This article describes the synthesis and characterization of polyisobutylene (PIB) carrying one primary hydroxyl head group and a tertiary chloride end group, [Ph? C(CH3)(CH2OH)–PIB–CH2? C(CH3)2Cl] prepared with direct functionalization via initiation. The polymerization of isobutylene was initiated with the α‐methylstyrene epoxide/titanium tetrachloride system. Living conditions were obtained from ?75 to ?50 °C (198–223 K). Low molecular weight samples (number‐average molecular weight ~ 4000 g/mol) were prepared under suitable conditions and characterized by Fourier transform infrared and 1H NMR spectroscopy. The presence of primary hydroxyl head groups in PIB was verified by both methods. Quantitative Fourier transform infrared with 2‐phenyl‐1‐propanol calibration and 1H NMR performed on both the hydroxyl‐functionalized PIB and its reaction product with trimethylchlorosilane showed that each polymer chain carried one primary hydroxyl head group. The synthetic methodology presented here is an effective and simple route for the direct functionalization of PIB. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 1005–1015, 2002  相似文献   

12.
Amino modified multiwall carbon nanotubes (MWNTs) are prepared, respectively, by two ways: the conventional one‐step method that directly treats acyl chloride functionalized MWNTs with 4, 4′‐diaminodiphenyl ether (ODA), giving the amino modified MWNT (Di‐MWNT), as well as an improved two‐step method in which acyl chloride functionalized MWNT react with mono‐Boc protected ODA first and then the Boc‐groups are deprotected to provide the amino modified MWNT (NH2‐MWNT). Anhydride‐terminated polyimide (PI) composite films based on NH2‐MWNT and Di‐MWNT are fabricated by solution blending and consequent planar casting. The exposed amino groups of NH2‐MWNT create strong covalent bonds with the anhydride‐terminated polyamide acid in the course of N‐acylation and curing chemical reactions. Solubility examinations of nanotubes and morphologies of the composite films indicate that the dispersion of NH2‐MWNT is significantly better than Di‐MWNT in PI matrix and NH2‐MWNT can form connected network throughout the PI matrix which makes the NH2‐MWNT/PI film presenting superior conductivity. Both morphologies and mechanical properties of the composites show that NH2‐MWNT has stronger interfacial interaction with the PI matrix. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 3449–3457  相似文献   

13.
The synthesis of primary hydroxyl‐telechelic polyisobutylene, HOCH2‐PIB‐CH2OH, often yields product the number average terminal functionality ( f n , CH 2 OH ) of which is less than theoretical 2.0, typically f n , CH 2 OH = 1.75–1.95. Polyurethane (PU) prepared with such low‐cost imperfect PIB‐diols, unsurprisingly, exhibit poor overall properties. Herein we report that mechanical, rheological, and thermal properties of polyisobutylene‐based polyurethane (PIB‐PU) and PIB‐PU reinforced with organically modified montmorillonite (OmMMT) prepared with PIB‐diol of f n , CH 2 OH = 1.85 are significantly enhanced by glycerol. Specifically, we document that calculated minor amounts of glycerol substantially improves tensile strength, ultimate elongation, elastic modulus, toughness, rubbery plateau, flow temperature, creep, permanent set, rate of recovery after loading, and thermal properties of PIB‐PU and OmMMT‐reinforced PIB‐PU prepared with PIB‐diol of f n , CH 2 OH = 1.85. The observations are summarized and discussed in terms of chemistry, micromorphology, and viscoelasticity. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 , 57, 929–935  相似文献   

14.
In this study, we report on the fabrication of tunable mixed‐charged copolymer brushes consisting of negatively charged carboxylic acid monomer (4‐vinylbenzoic acid, VBA) and positively charged quaternary amine monomer ((ar‐vinylbenzyl)trimethylammonium chloride) via reversible addition–fragmentation chain transfer‐mediated polymerization. The copolymer brushes have negative charge under neutral and basic conditions, and are positively charged under acidic conditions owing to the protonation of the carboxylate groups. The copolymer brushes revealed a unique reversible wetting behavior with pH. The reversible properties of the copolymer brushes can be employed to regulate the adsorption of charged biomacromolecules such as DNA and proteins. © 2013 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

15.
A simple but efficient strategy has been developed for the synthesis of novel di‐, tri‐, multi‐, and star‐block copolymers comprising poly(ethylene glycol) (PEG) and polyisobutylene (PIB) blocks. The synthesis principle involves the coupling of appropriately terminally functionalized PEG and PIB sequences, specifically the hydrosilation of mono‐, di‐, and tetra‐allyl‐telechelic PEGs (PEG‐allyl, allyl‐PEG‐allyl, and C(‐PEG‐allyl)4 by mono‐ and di‐Si(CH3)2H telechelic PIBs (PIB‐SiH and HiS‐PIB‐SiH). Representative block copolymers, for example, PEG‐PIB, PIB‐PEG‐PIB, (‐PIB‐PEG‐)n, and C(‐PEG‐PIB)4 have been assembled and their structures determined by 1H and 13C NMR spectroscopy. The bulk and surface morphology of select triblocks have been investigated by DSC and AFM and the findings interpreted in terms of phase‐separated PEG and PIB microdomains. The swelling behavior in water of various block copolymers also has been studied. Block copolymers containing 50–70 wt % PIB produce hydrogels, the integrity of which is maintained by physical crosslinks by PIB segments. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 3200–3209, 2000  相似文献   

16.
Amphiphilic polymer networks consisting of hydrophilic poly(2‐hydroxyethyl methacrylate) (PHEMA) and hydrophobic polyisobutylene (PIB) chains were synthesized from a cationic copolymer of isobutylene (IB) and 3‐isopropenyl‐α,α‐dimethylbenzyl isocyanate (IDI) prepared at ?50 °C in dichloromethane in conjunction with SnCl4. The isocyanate groups of this random copolymer, PIB(NCO)n, were subsequently transformed in situ to methacrylate (MA) groups in the dibutyltin dilaurate‐catalyzed reaction with 2‐hydroxyethyl methacrylate (HEMA) at 30 °C. The resulting PIB(MA)n with number–average molecular weight 8200 and average functionality Fn ~ 4 per chain was in situ copolymerized radically with HEMA at 70 °C, giving rise to the amphiphilic networks containing 41 and 67 mol % HEMA. PHEMA–PIB network containing 43 mol % HEMA was also prepared by radical copolymerization of PIB(MA)n precursor with HEMA using sequential synthesis. An amphiphilic nature of the resulting networks was proved by swelling in both water and n‐heptane. PIB(NCO)n and PIB(MA)n were characterized by FTIR spectroscopy, SEC and the latter also by 1H NMR spectroscopy. Solid state 13C NMR spectroscopy was used for characterization of the resulting PHEMA–PIB networks. Whereas single glass‐transition temperature, Tg = ?67.4 °C, was observed for the rubbery crosslinked PIB prepared by reaction of PIB(NCO)n with water, the PHEMA–PIB networks containing 67 and 41 mol % HEMA showed two Tg's: ?70.4 and 102.7 °C, and ?63 and 107.2 °C, respectively. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 2891–2900, 2006  相似文献   

17.
In this article, a serial of bi‐functionalized hollow polymer particles (BF‐HPPs), containing both carboxylate and different amide/amine groups [HPP‐NH2, HPP‐ethylenediamine (EDA), and HPP‐diethylenetriamine (DETA)], were specially designed and synthesized to investigate the effect of neighboring amino groups on their adsorption/desorption behavior. Due to the high density of carboxylate groups, these BF‐HPPs can serve as efficient adsorbents for selective removal of positively charged methylene blue (b‐MB). With increasing chain length of the neighboring amino groups, the maximum adsorption capacities (qmax) at pH 7 decrease dramatically from 606.1 mg g?1 for HPP‐NH2, to 404.9 mg g?1 for HPP‐EDA, and 332.2 mg g?1 for HPP‐DETA, due to increasing steric hindrance. Significantly, the equilibrium adsorption can be achieved within 15 min for HPP‐EDA and HPP‐DETA, while it takes more than 720 min for HPP‐NH2. Moreover, the qmax of HPP‐DETA exhibits remarkable pH‐sensitive property, which decreases sharply to 32.7 mg g?1 at pH 3 due to strong electrostatic repulsion between positively charged ammonium groups and b‐MB molecules. Accordingly, the desorption efficiency of HPP‐DETA reached up to 94% after one desorption step, which is much higher than that of HPP‐EDA (78%) and HPP‐NH2 (60%). The absorbed b‐MB can be facilely desorbed and the adsorption capacity of the regenerated HPP‐DETA keeps above 95% after five consecutive adsorption–desorption cycles. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019, 57, 1404–1413  相似文献   

18.
Various novel block cationomers consisting of polyisobutylene (PIB) and poly[2‐(dimethylamino)ethyl methacrylate] (PDMAEMA) segments were synthesized and characterized. The specific targets were various molecular weight diblocks (PIB‐b‐PDMAEMA+) and triblocks (PDMAEMA+b‐PIB‐b‐PDMAEMA+), with the PIB blocks in the DPn = 50–200 range (number‐average molecular weight = 3,000–9000 g/mol) connected to blocks of PDMAEMA+ cations in the DPn = 5–20 range (where DP is the number‐average degree of polymerization). The overall synthetic strategy for the preparation of these block cationomers had four steps: (1) synthesis by living cationic polymerization of mono‐ and diallyltelechelic polyisobutylenes, (2) end‐group transformation to obtain PIBs fitted with termini capable of mediating the atom transfer radical polymerization (ATRP) of DMAEMA, (3) ATRP of DMAEMA, and (4) quaternization of PDMAEMA to PDMAEMA +I? by CH3I. Scheme 1 shows the microarchitecture and outlines the synthesis route. Kinetic and model experiments provided guidance for developing convenient synthesis methods. The microarchitecture of PIB–PDMAEMA di‐ and triblocks and the corresponding block cationomers were confirmed by 1H NMR and FTIR spectroscopy and solubility studies. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 3679–3691, 2002  相似文献   

19.
Allyl‐telechelic polyisobutylene (A‐PIB‐A) produced by the bis‐benzocyclobutane dichloride (bBCB‐diCl) initiator contains the bis‐benzocyclobutane (bBCB) fragment at the center of the macromolecule (A‐PIB‐bBCB‐PIB‐A). Thermolysis of A‐PIB‐bBCB‐PIB‐A quantitatively converts the central bBCB fragment to a substituted conjugated tetraene (A‐PIB‐tetraene‐PIB‐A). The structure of A‐PIB‐tetraene‐PIB‐A was anticipated from small molecule models and identified/quantitated by 1H NMR spectroscopy. This is the first time a reactive functional group was introduced at the statistical center of a (telechelic) PIB. Subsequently, the A‐PIB‐tetraene‐PIB‐A was peroxidized to an epoxy derivative. Reaction of the A‐PIB‐tetraene‐PIB‐A with HSCH2CH2OH produced HOCH2‐telechelic PIB containing a central  CH2OH function, and hydrosilation with HSi(Me2)‐O‐Si(Me2)H produced SiH‐telechelic PIB with a central  SiH function. Reactions with maleic anhydride, tetracyanoethylene, butyl lithium, and potassium permanganate have also been examined. In sum, A‐PIB‐bBCB‐PIB‐A and A‐PIB‐tetraene‐PIB‐A are useful intermediates for the synthesis of novel PIB‐based materials for various end uses under investigation. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 1140–1145  相似文献   

20.
A novel NH2+ ion implantation‐modified indium tin oxide (NH2/ITO) electrode was prepared. Acid‐pretreated, negatively charged MWNTs were firstly modified on the surface of NH2+ ion implantation electrode, then, positively charged Mb was adsorbed onto MWNTs films by electrostatic interaction. The assembly of MWNTs and Mb was characterized with electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). The immobilized Mb showed a couple of quasireversible cyclic voltammetry peaks in pH 7.0 phosphate buffer solution (PBS). The apparent surface concentration of Mb at the electrode surface was 1.06×10?9 mol cm?2. The Mb/MWNTs/NH2/ITO electrode also gave an improved electrocatalytic activity towards the reduction of hydrogen peroxide. The catalysis currents increased linearly to the H2O2 concentration in a wide range from 9×10?7 to 9.2×10?5 M with a correlation coefficient of 0.999. The detection limit was 9.0×10?7 M. The experiment results demonstrated that the modified electrode provided a biocompatible microenvironment for protein and supplied a necessary pathway for its direct electron transfer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号