首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study, amorphous HfInZnO (a-HIZO) thin films and related thin-film transistors (TFTs) were fabricated using the RF-sputtering method. The effects of the sputtering power (50–200 W) on the structural, surface, electrical, and optical properties of the a-HIZO films and the performance and NBIS stability of the a-HIZO TFTs were investigated. The films’ Ne increased and resistivity decreased as the sputtering power increased. The 100 W deposited a-HIZO film exhibited good optical and electrical properties compared with other sputtering powers. Optimization of the 100 W deposited a-HIZO TFT demonstrated good device performance, including a desirable μFE of 19.5 cm2/Vs, low SS of 0.32 V/decade, low Vth of 0.8 V, and high Ion/Ioff of 107, respectively. The 100 W deposited a-HIZO TFT with Al2O3 PVL also exhibited the best stability, with small Vth shifts of -2.2 V during NBIS testing. These high-performance a-HIZO thin films and TFTs with Al2O3 PVL have practical applications in thin-film electronics.  相似文献   

2.
Zinc-Tin-Oxide (ZTO) thin films were fabricated using a simple and eco-friendly sol-gel method and their application in thin film transistors (TFTs) was investigated. Annealing temperature has a crucial influence on the structure and electrical properties of sol-gel ZTO thin films. The ZTO thin films annealed at 300–600?°C revealed smooth and uniform surfaces with amorphous state, in addition, a high optical transparency over 90% of the ZTO films in the visible range was obtained. The electrical performance of ZTO TFTs showed obvious dependence on annealing temperature. The ZTO TFTs annealed at 500?°C showed a high carrier mobility of 5.9?cm2/V, high on/off current ratio (Ion/off) of 106-107, and threshold voltage (Vth) of 1.03?V. To demonstrate the application of sol-gel ZTO films in low-power display fields, we also fabricated ZTO TFTs with a solution-processed high-permittivity (high-k) ZrTiOx dielectric layer. The ZTO/ZrTiOx TFTs showed high mobility of 17.9?cm2/V and Ion/off of 105-106?at a low operation voltage of 3?V, indicating that Indium-free ZTO thin films would be potential candidates for low cost, high performance oxide TFT devices.  相似文献   

3.
ZnO-coated TiO2 (ZTO) thin films were deposited on ITO substrates by a sol–gel method for application as the work electrode for dye-sensitized solar cells (DSSCs). The IV curve and the incident photon-to-current conversion efficiency (IPCE) value of DSSCs for ZTO thin films were studied and compared with single TiO2 films. The results show that the short-circuit photocurrent (J sc) and open-circuit voltage (V oc) values increased from 3.7 mA/cm2 and 0.68 V for the DSSCs with a single TiO2 film to 4.5 mA/cm2 and 0.72 V, respectively, for the DSSCs with a ZTO thin film. It indicated that the DSSCs with a ZTO thin film contributed to provide an inherent energy barrier that suppressed charge recombination significantly. In addition, the higher IPCE value in the ZTO thin film is attributed to the better charge separation by a fast electron transfer process using two semiconductors with different conduction band edges and energy positions.  相似文献   

4.
Hf–Sn–Zn–O (HTZO) thin films were prepared on SiO2/SiNx substrates at room temperature by the direct current (DC) magnetron sputtering of Hf-doped Sn–Zn–O targets. The characteristics of films with different amounts of Hf were analyzed. Amorphous HTZO films were obtained by increasing the Hf content, while polycrystalline films have not shown with Hf doping. With the proper Hf concentration in the HTZO films (∼2.0 atomic % Hf/(Hf + Sn + Zn + O)), HTZO films demonstrated good performance as an oxide semiconductor channel material in thin film transistors (TFTs) with a field effect mobility (μFE) of 10.9 cm2V−1 s−1, an on/off current ratio of 109, and a subthreshold voltage swing of 0.71 V/decade.  相似文献   

5.
Spin‐coated zirconium oxide films were used as a gate dielectric for low‐voltage, high performance indium zinc oxide (IZO) thin‐film transistors (TFTs). The ZrO2 films annealed at 400 °C showed a low gate leakage current density of 2 × 10–8 A/cm2 at an electric field of 2 MV/cm. This was attributed to the low impurity content and high crystalline quality. Therefore, the IZO TFTs with a soluble ZrO2 gate insulator exhibited a high field effect mobility of 23.4 cm2/V s, excellent subthreshold gate swing of 70 mV/decade and a reasonable Ion/off ratio of ~106. These TFTs operated at low voltages (~3.0 V) and showed high drain current drive capability, enabling oxide TFTs with a soluble processed high‐k dielectric for use in backplane electronics for low‐power mobile display applications. (© 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

6.
a-IGZO films were deposited on Si substrates by d.c sputtering technique with various working power densities (pd) in the range of 0.74–2.22 W/cm2. The correlation between material properties and their effects on electrical stability of a-IGZO thin-film transistor (TFTs) was studied as a function of pd. At a pd of 1.72 W/cm2 a-IGZO film had smoothest surface roughness (0.309 nm) with In-rich and Ga-poor cation compositions as a channel. This structurally ordered TFTs exhibited a high field effect mobility of 9.14 cm2/Vs, a sub-threshold swing (S.S.) of 0.566 V/dec, and an on–off ratio of 107. Additionally, the Vth shift in hysteresis loop is almost eliminated. It was shown that the densification of the a-IGZO film resulted in the reduction of its interface trap density (1.83 × 1012 cm?2), which contributes for the improvement in the electrical and thermal stability.  相似文献   

7.
The fabrication of 4H-SiC vertical trench-gate metal-oxide-semiconductor field-effect transistors(UMOSFETs) is reported in this paper.The device has a 15-μm thick drift layer with 3×1015 cm-3 N-type doping concentration and a 3.1μm channel length.The measured on-state source-drain current density is 65.4 A/cm2 at Vg = 40 V and VDS = 15 V.The measured threshold voltage(Vth) is 5.5 V by linear extrapolation from the transfer characteristics.A specific on-resistance(Rsp-on) is 181 mΩ·cm2 at Vg = 40 V and a blocking voltage(BV) is 880 V(IDS = 100 μA@880V) at Vg = 0 V.  相似文献   

8.
《Current Applied Physics》2014,14(7):932-935
Thin film transistors (TFTs) with indium–zinc tin-oxide (IZTO) dual-channel layers were fabricated on heavily-doped p-type Si substrates by using a tilted dual-target radio-frequency magnetron sputtering system. The number of oxygen vacancies in the IZTO channel layer decreased with increasing oxygen partial pressure, resulting in a decrease in the conductivity. The threshold voltage (Vth) shifted toward positive gate-source voltage with increasing oxygen partial pressure for the growth of the IZTO layer because of a decrease in the carrier concentration. The Vth, the mobility, the on/off-current ratio, and the subthreshold swing of the dual-channel IZTO TFTs were 3.5 V, 7.1 cm2/V s, 1.3 V/decade, and 8.2 × 106, respectively, which was enhanced by utilizing dual-channel layers consisting of a top channel deposited at a high oxygen partial pressure and a bottom channel deposited at a low oxygen partial pressure.  相似文献   

9.
The effects of antimony (Sb) doping on solution‐processed indium oxide (InOx) thin film transistors (TFTs) were examined. The Sb‐doped InSbO TFT exhibited a high mobility, low gate swing, threshold voltage, and high ION/OFF ratio of 4.6 cm2/V s, 0.29 V/decade, 1.9 V, and 3 × 107, respectively. The gate bias and photobias stability of the InSbO TFTs were also improved by Sb doping compared to those of InOx TFTs. This improvement was attributed to the reduction of oxygen‐related defects and/or the existence of the lone‐pair s‐electron of Sb3+ in amorphous InSbO films. (© 2014 WILEY‐VCH Verlag GmbH &Co. KGaA, Weinheim)  相似文献   

10.
《Current Applied Physics》2015,15(9):1010-1014
A polycrystalline MgZnO/ZnO bi-layer was deposited by using a RF co-magnetron sputtering method and the MgZnO/ZnO bi-layer TFTs were fabricated on the thermally oxidized silicon substrate. The performances with varying the thickness of ZnO layer were investigated. In this result, the MgZnO/ZnO bi-layer TFTs which the content of Mg is about 2.5 at % have shown the enhancement characteristics of high mobility (6.77–7.56 cm2 V−1 s−1) and low sub-threshold swing (0.57–0.69 V decade−1) compare of the ZnO single layer TFT (μFE = 5.38 cm2 V−1 s−1; S.S. = 0.86 V decade−1). Moreover, in the results of the positive bias stress, the ΔVon shift (4.8 V) of MgZnO/ZnO bi-layer is the 2 V lower than ZnO single layer TFT (ΔVon = 6.1 V). It reveals that the stability of the MgZnO/ZnO bi-layer TFT enhanced compared to that of the ZnO single layer TFT.  相似文献   

11.
In this work, solution-processed indium oxide (In2O3) thin film transistors (TFTs) were fabricated by a two-step annealing method. The influence of post-metal annealing (PMA) temperatures on the electrical performance and stability is studied. With the increase of PMA temperatures, the on-state current and off-state current (Ion/Ioff) ratio is improved and the sub-threshold swing (SS) decreased. Moreover, the stability of In2O3 TFTs is also improved. In all, In2O3 TFT with post-metal annealing temperature of 350°С exhibits the best performance (a threshold voltage of 4.75 V, a mobility of 13.8 cm2/V, an Ion/Ioff ratio of 1.8 × 106, and a SS of 0.76 V/decade). Meanwhile, the stability under temperature stress (TBS) and positive bias stress (PBS) also show a good improvement. It shows that the PMA treatment can effectively suppress the interface trap and bulk trap and result in an obviously improvement of the In2O3 TFTs performance.  相似文献   

12.
Tunnett     
Conclusion The p+–n+–i(v)–n+ GaAs Tunnett diodes have been fabricated with control of the growing diffusion technique in TDM CVP liquid phase epitaxial growth. The threshold current density (Jth) of 2.8×104 A/cm2, the threshold voltage (Vth) of 5.3V for the oscillation and the 1% duty cycle operation have been succeeded. The more reduction of Jth and Vth will be able to realize the CW operation.  相似文献   

13.
Ta2O5/Al2O3 stacked thin film was fabricated as the gate dielectric for low-voltage-driven amorphous indium–gallium–zinc-oxide (IGZO) thin film transistors (TFTs). The Ta2O5/Al2O3 stacked thin film exhibits a combination of the advantages of Al2O3 and Ta2O5. The IGZO TFT with Ta2O5/Al2O3 stack exhibits good performance with large saturation mobility of 26.66 cm2 V−1 s−1, high on/off current ratio of 8 × 107, and an ultra-small subthreshold swing (SS) of 78 mV/decade. Such small SS value is even comparable with that of submicrometer single-crystalline Si MOSFET.  相似文献   

14.
《Current Applied Physics》2020,20(9):1041-1048
We report the effect of germanium doping on the active layer of amorphous Zinc–Tin-Oxide (a-ZTO) thin film transistor (TFT). Amorphous thin film samples were prepared by RF magnetron sputtering using single targets composed of Zn2Ge0.05Sn0.95O4 and Zn2SnO4 with variable oxygen contents in the sputtering gases. In comparison with undoped, Ge-doped a-ZTO films exhibited five order of magnitude lower carrier density with a significantly higher Hall-mobility, which might be due to suppressed oxygen vacancies in the a-ZTO lattice since the Ge substituent for the Sn site has relatively higher oxygen affinity. Thus, the bulk and interface trap densities of Ge-doped a-ZTO film were decreased one order of magnitude to 7.047 × 1018 eV−1cm−3 and 3.52 × 1011 eV−1cm−2, respectively. A bottom-gate TFT with the Ge-doped a-ZTO active layer showed considerably improved performance with a reduced SS, positively shifted Vth, and two orders of magnitude increased Ion/Ioff ratio, attributable to the doped Ge ions.  相似文献   

15.
Zr-doped indium zinc oxide (IZO) thin film transistors (TFTs) are fabricated via a solution process with different Zr doping ratios. The addition of Zr suppressed the carrier concentration in the IZO films, which was confirmed by Hall Effect measurements. As the amount of Zr was increased in the oxide active layer of TFTs, the subthreshold swing (S.S) reduced, the ON/OFF ratio improved, and the threshold voltage (Vth) shifted positively. Moreover, the starting points of the ON state for TFTs near the point zero gate voltage could be controlled by the addition of Zr. The 0.3% Zr-doped IZO TFT exhibited a high saturation mobility of 7.0 cm2 V−1 s−1, ON/OFF ratio of 2.6 × 106 and S.S of 0.57 V/decade compared the IZO TFT with 10.1 cm2 V−1 s−1, 1.7 × 106 and 0.75 V/decade. The Zr effect of the gate bias stability was examined. Zr-doped IZO TFTs were relatively unstable under a positive bias stress (PBS), whereas they showed good stability at a negative bias stress (NBS). The gate bias stability of the oxide TFTs were compared with the extracted parameters through a stretched-exponential equation. The characteristic trapping time under NBS of 0.3% Zr-doped IZO TFTs was improved from 8.3 × 104 s for the IZO TFT to 3.1 × 105 s.  相似文献   

16.
通过扫描电镜和X射线衍射对SiO2衬底上生长并五苯和酞菁铜薄膜的表面形貌进行表征,并得到在SiO2衬底上生长的并五苯薄膜是以岛状结构生长,其大小约为100nm,且薄膜有较好的结晶取向,呈多晶态存在. 酞菁铜薄膜则没有表现出明显的生长机理,其呈非晶态存在. 还对通过掩膜的方法制作得以酞菁铜和并五苯为有源层的顶栅极有机薄膜晶体管的特性进行了研究. 有源层的厚度为40nm,绝缘层SiO2的厚度为250nm,器件的沟道宽长比(W/关键词: 有机薄膜晶体管 并五苯薄膜 酞菁铜薄膜 μEF)')" href="#">场效应迁移率(μEF)  相似文献   

17.
The stabilities of amorphous indium‐zinc‐oxide (IZO) thin film transistors (TFTs) with back‐channel‐etch (BCE) structure are investigated. A molybdenum (Mo) source/drain electrode was deposited on an IZO layer and patterned by hydrogen peroxide (H2O2)‐based etchants. Then, after etching the Mo layer, SF6 plasma with direct plasma mode was employed and optimized to improve the bias stress stability. Scanning electron microscopy and X‐ray photoelectron spectroscopic analysis revealed that the etching residues were removed efficiently by the plasma treatment. The modified BCE‐ TFTs showed only threshold voltage shifts of 0.25 V and –0.20 V under positive/negative bias thermal stress (P/NBTS, VGS = ±30 V, VDS = 0 V and T = 60 °C) after 12 hours, respectively. (© 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

18.
Thin film transistors (TFTs) with zirconium‐doped indium oxide (ZrInO) channel layer were successfully fabricated on a flexible PEN substrate with process temperature of only 150 °C. The flexible ZrInO TFT exhibited excellent electrical performance with a saturation mobility of as high as 22.6 cm2 V–1 s–1, a sub‐threshold swing of 0.39 V/decade and an on/off current ratio of 2.5 × 107. The threshold voltage shifts were 1.89 V and ?1.56 V for the unpassivated flexible ZrInO TFT under positive and negative gate bias stress, respectively. In addition, the flexible ZrInO TFT was able to maintain the relatively stable performance at bending curvatures larger than 20 mm, but the off current increased apparently after bent at 10 mm. Detailed studies showed that Zr had an effect of suppress the free carrier generation without seriously distorting the In2O3 lattice. (© 2016 WILEY‐VCH Verlag GmbH &Co. KGaA, Weinheim)  相似文献   

19.
Polycrystalline thin film transistors (poly-Si TFTs) were fabricated using the 5-s-rapid joule heating method. The optimum condition of 0.77 J/cm2 for crystallization was determined through analysis of transfer characteristics of poly-Si TFTs. The density of the tail-type defect states decreased from 1.4×1012 to 9.5×1011 cm-2 and the carrier mobility increased from 300 cm2/Vs to 760 cm2/Vs as the joule heating energy density increased from 0.68 to 0.77 J/cm2. The threshold voltage of the drain current ranged between 0.9 and 1.15 V. PACS 85.30.De; 61.72.Bb; 81.10.Jt; 02.60.Cb  相似文献   

20.
《Current Applied Physics》2018,18(11):1447-1450
The electron spin resonance (ESR) detects point defect of the In-Ga-Zn oxide (IGZO) like singly ionized oxygen vacancies and excess oxygen, and get spin density as a parameter of defect state. So, we demonstrated the spin density measurement of the IGZO film with various deposition conditions and it has linear relationship. Moreover, we matched the spin density with the total BTS and the threshold voltage (Vth) distribution of the IGZO thin film transistors. The total BTS ΔVth and the Vth distribution were degraded due to the spin density increases. The spin density is the useful indicator to predict Vth instability of IGZO TFTs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号