首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The precipitation polymerization of acrylamide/methacrylic acid (AAm/MAA) in ethanol (EtOH) was thoroughly investigated from detecting the homogeneity of the initial solution prior to polymerizations to the final products of the polymerizations. Dynamic light scattering and scanning electron microscopy were employed for the investigations. The solutions of AAm and AAm/acrylic acid (AAm/AA) were homogeneous. However, the solutions of AAm/MAA, AAm/poly(MAA) (PMAA), and AAm/poly(AA) (PAA) were not homogeneous as they are usually considered to be: entities with size distributions of around 150, 40, and 17 nm, respectively, were detected at the polymerization temperature of 60 °C. Accordingly, analogous to the entities that are similar to the structure of micelles formed in the solutions of AAm/PMAA and AAm/PAA because of polymer–AAm interactions, it was suggested that the complexes of AAm/MAA stemming from the molecular interactions, particularly the (lypo‐) hydrophobic interaction, aggregated to form minimonomer droplets at 60 °C. The monodisperse microspheres were prepared only in the AAm/MAA‐EtOH systems, whereas the microspheres were not prepared in the homogeneous AAm‐EtOH systems despite the precipitation of PAAm. The results obtained from various polymerizations showed that the microspheres originated from the polymerization within the minimonomer droplets. A new mechanism was established that describes the processes for the formation of all products possibly generated in the AAm‐MAA‐EtOH polymerization system. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 2823–2832, 2004  相似文献   

2.
The free radical polimerizability behavior of alkyl α‐hydroxymethacrylate (RHMA) derivatives ( M1–M3 ) has been modeled by considering the propagation of the dimeric units of the compounds of interest. All the transition structures in this class of monomers are stabilized by long‐range C?O…H? C interactions. The RHMA monomer bearing the ester functionality ( M2 ) polymerizes slightly faster than the one with the ether functionality ( M1 ) because of stronger electrostatic interactions between the C?O and H? C groups. 2‐(Methoxycarbonyl)allyl benzoate ( M3 ) shows higher reactivity as compared to M1 and M2 due to stronger electrostatic interactions. The same type of study has been carried out for hexyl ( M4 ), benzyl ( M5 ), and phenyl ( M6 ) acrylate derivatives whose increasing reactivity has been attributed to the presence of C?O…H? C, C?O…H‐? as well as π–π stabilizing interactions, respectively. While B3LYP/6‐31+G(d) has been used to locate the stationary points along the free radical polymerization of nonaromatic species, long‐range stabilizing interactions have only been detected with M06‐2X/6‐31+G(d). The kinetics that we obtain with this latter methodology for the free radical polymerization reactions of M1 – M6 agree well qualitatively with experiment. An implicit solvent model has reproduced the kinetics of M1–M3 in benzene the best. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

3.
Methacrylic acid (MAA) and acrylic acid (AA) were grafted onto high‐density polyethylene (PE) with UV initiation and a range of solvents. With acetone as the solvent, MAA was more easily grafted onto PE when the photoinitiator benzophenone was precoated on PE than when it was dissolved in the monomer solution. The grafting was faster in aliphatic solvents than in polar solvents or a UV‐adsorbing aromatic solvent (toluene). Acetone itself could initiate the photografting of both MAA and AA onto PE when it was mixed with water. The extent of grafting of MAA onto PE showed a maximum when there was about 40% acetone in the mixture. For AA, when the acetone/water concentration was 10%, the extent of grafting increased rapidly with the irradiation time. At higher acetone concentrations, the extent of grafting was low. Atomic force microscopy images showed that the surface topography of PE grafted with MAA in acetone/water was quite different from that obtained when the grafting was performed in other organic solvents. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 253–262, 2004  相似文献   

4.
For the development of pH‐sensitive surfactants to be used in water‐in‐oil fermentation, the free‐radical terpolymerization of methacrylic acid (MAA), methoxy poly(ethylene glycol) methacrylate (MPEGMA), and lauryl methacrylate (LMA), at a molar ratio of 1.0:0.04:0.76, was studied with two initiators, azobisisobutyronitrile (AIBN) and hydrogen peroxide, at different concentrations. The polymer synthesized with 0.45% AIBN as the initiator was the most promising, giving similar conversions of all three monomers throughout the 10‐h polymerization. The subsequent study on AIBN‐initiated systems indicated that MPEGMA caused an increase‐then‐decrease profile of the MAA conversion with a plateau around an ethylene glycol/MAA ratio of 1–2. This observation was fairly consistent with the well‐known type II template polymerization of poly(ethylene glycol) (PEG)–MAA systems. The reactivity ratios obtained in this study suggested that the polymer synthesized with AIBN as the initiator had a structure of alternating blocks of MAA and LMA, with isolated PEG grafts. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 2950–2959, 2004  相似文献   

5.
An amphiphilic block copolymer of silacyclobutane and methacrylic acid (MAA) was synthesized via a living anionic polymerization of 1,1‐diethylsilacylcobutane (EtSB). Sequential addition of 1,1‐diphenylethylene and t‐butyl methacrylate (tBMA) to living poly(EtSB) in the presence of lithium chloride gave poly(EtSB‐blocktBMA) with narrow molecular weight distributions. The t‐butyl ester groups in the obtained polymer were readily hydrolyzed via heating in 1,4‐dioxane in the presence of concentrated aqueous hydrochloric acid. The block copolymer with a short MAA segment was soluble in chloroform and insoluble in methanol and basic water, whereas the block copolymer with a long MAA segment was soluble in methanol and basic water and insoluble in chloroform. The block polymer (EtSB/tBMA = 45/60) formed a monolayer film on the water surface; this was confirmed by surface pressure measurement. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 86–92, 2001  相似文献   

6.
This article describes the synthesis and characterization of new amphiphilic polymer conetworks containing hydrophilic poly(methacrylic acid) (PMAA) or poly(acrylic acid) (PAA) and hydrophobic polyisobutylene (PIB) chains. These conetworks were prepared by a two‐step polymer synthesis. In the first step, a cationic copolymer of isobutylene (IB) and 3‐isopropenyl‐α,α‐dimethylbenzyl isocyanate (IDI) was prepared. The isocyanate groups of the IB–IDI random copolymer were subsequently transformed in situ to methacrylate (MA) groups in reaction with 2‐hydroxyethyl methacrylate (HEMA). In the second step, the resulting MA‐multifunctional PIB‐based crosslinker, PIB(MA)n, with an average functionality of approximately four methacrylic groups per chain, was copolymerized with methacrylic acid (MAA) or acrylic acid (AA) by radical mechanism in tetrahydrofuran giving rise to amphiphilic conetworks containing 31–79 mol % of MAA or 26–36 mol % of AA. The synthesized conetworks were characterized with solid‐state 13C‐NMR spectroscopy and differential scanning calorimetry. The amphiphilic nature of the conetworks was proven by swelling in both aqueous media with low and high pH and n‐heptane. The effect of varying pH on the swelling behavior of the synthesized conetworks is presented. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 1284–1291, 2009  相似文献   

7.
This work examines the scope and limitations of the cyanoxyl (·OC?N)‐mediated free‐radical polymerization of acrylic acid (AA) with respect to the criteria of livingness. Cyanoxyl persistent radicals were generated in situ through the reaction between arenediazonium salts (X? C6H4N?NBF, where X is H, OCH3, Cl, or NO2) and sodium cyanate (NaOCN). This article thoroughly discusses the role played by such oxygen‐centered radicals in the polymerization process; it particularly focuses on the influence of the concentration and nature of the diazonium salt, the solvent, and the temperature on features such as the variations of ln([M]0/[M]) versus time (where [M]0 is the initial monomer concentration and [M] is the monomer concentration), the number‐average molar mass versus conversion, and the polydispersity versus conversion in cyanoxyl‐mediated free‐radical polymerizations of AA. Cyanoxyl‐terminated samples were used as macroinitiators for the polymerization of methyl methacrylate to generate poly(acrylic acid)‐b‐poly(methyl methacrylate) block copolymers. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 519–533, 2005  相似文献   

8.
9.
In this work, the poly(methacrylic acid‐coN‐isopropylacrylamide) thermosensitive composite hollow latex particles was synthesized by a three‐step reaction. The first step was to synthesize the poly(methyl methacrylate‐co‐methacrylic acid) (poly(MMA‐MAA)) copolymer latex particles by the method of soapless emulsion polymerization. The second step was to polymerize methacrylic acid (MAA), N‐isopropylacrylamide (NIPAAm), and N,N′‐methylenebisacrylamide in the presence of poly(MMA‐MAA) latex particles to form the linear poly(methyl methacrylate‐co‐methacrylic acid)/crosslinking poly(methacrylic acid‐coN‐isopropylacrylamide) (poly(MMA‐MAA)/poly(MAA‐NIPAAm)) core–shell latex particles. In the third step, the core–shell latex particles were heated in the presence of ammonia solution to form the crosslinking poly(MAA‐NIPAAm) thermosensitive hollow latex particles. The morphologies of poly(MMA‐MAA)/poly(MAA‐NIPAAm) core–shell latex particles and poly(MAA‐NIPAAm) hollow latex particles were observed. The influences of crosslinking agent and shell composition on the lower critical solution temperature of poly(MMA‐MAA)/poly(MAA‐NIPAAm) core–shell latex particles and poly(MAA‐NIPAAm) hollow latex particles were, respectively, studied. Besides, the poly(MAA‐NIPAAm) thermosensitive hollow latex particles were used as carriers to load with the model drug, caffeine. The effect of various variables on the amount of caffeine loading and the efficiency of caffeine release was investigated. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 5203–5214  相似文献   

10.
In this study, the poly(NIPAAm–MAA)/Fe3O4 hollow latex particles were synthesized by three steps. The first step was to synthesize the poly(methyl methacrylate‐co‐methylacrylate acid) (poly(MMA‐MAA)) copolymer latex particles by the method of soapless emulsion polymerization. Following the first step, the second step was to polymerize N‐isopropylacrylamide (NIPAAm), MAA, and crosslinking agent (N,N'‐methylene‐bisacrylamide (MBA)) in the presence of poly(MMA‐MAA) latex particles to form the linear poly(MMA‐MAA)/crosslinking poly (NIPAAm‐MAA) core‐shell latex particles. After the previous processes, the core‐shell latex particles were heated in the presence of NH4OH to dissolve the linear poly(MMA‐MAA) core in order to form the poly(NIPAAm‐MAA) hollow latex particles. In the third step, Fe2+ and Fe3+ ions were introduced to bond with the ? COOH groups of MAA segments in the poly(NIPAAm‐MAA) hollow polymer latex particles. Further by a reaction with NH4OH and then Fe3O4 nanoparticles were generated in situ and the poly(NIPAAm‐MAA)/Fe3O4 magnetic composite hollow latex particles were formed. The concentrations of MAA, crosslinking agent (N,N'‐methylene bisacrylamide), and Fe3O4 nanoparticles were important factors to influence the morphology of hollow latex particles and lower critical solution temperature of poly(NIPAAm–MAA)/Fe3O4 magnetic composite hollow latex particles. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

11.
In this study, the poly(N‐isopropylacrylamide‐methylacrylate acid)/Fe3O4/poly(N‐isopropylacrylamide‐methylacrylate acid) (poly(NIPAAm‐MAA)/Fe3O4/poly(NIPAAm‐MAA)) two‐shell magnetic composite hollow latex particles were synthesized by four steps. The poly(methyl methacrylate‐co‐methylacrylate acid) (poly(MMA‐MAA)) copolymer latex particles were synthesized first. Then, the second step was to polymerize NIPAAm, MAA, and crosslinking agent in the presence of poly(MMA‐MAA) latex particles to form the linear poly(MMA‐MAA)/crosslinking poly(NIPAAm‐MAA) core–shell latex particles. Then, the core–shell latex particles were heated in the presence of NH4OH to dissolve the linear poly(MMA‐MAA) core to form the poly(NIPAAm‐MAA) hollow latex particles. In the third step, the Fe3O4 nanoparticles were generated in the presence of poly(NIPAAm‐MAA) hollow polymer latex particles and formed the poly(NIPAAm‐MAA)/Fe3O4 magnetic composite hollow latex particles. The fourth step was to synthesize poly(NIPAAm‐MAA) in the presence of poly(NIPAAm‐MAA)/Fe3O4 latex particles to form the poly(NIPAAm‐MAA)/Fe3O4/poly(NIPAAm‐MAA) two‐shell magnetic composite hollow latex particles. The effect of various variables such as reactant concentration, monomer ratio, and pH value on the morphology and volume‐phase transition temperature of two‐shell magnetic composite hollow latex particles was studied. Moreover, the latex particles were used as carriers to load with caffeine, and the caffeine‐loading characteristics and caffeine release rate of latex particles were also studied. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 2880–2891  相似文献   

12.
We previously established a new mechanism of monodispersed poly(acrylamide/methacrylic acid) (PAAm/MAA) microspheres on the basis that the minimonomer droplets of AAm/MAA complexes were formed in ethanol at a polymerization temperature of 60 °C prior to the polymerization. Here, the effects of various factors such as the types and amount of initiators and crosslinking agents on the average diameters and morphologies of PAAm/MAA microspheres were qualitatively discussed on the basis of the new mechanism. The partition of reagents between the minimonomer droplets and the continuous medium was particularly emphasized in discussion because the formation of microspheres occurred in the minimonomer droplets. The new mechanism suggested that the size (number) and morphologies of the microspheres as well as the polymerization kinetics were consequently dependent on the properties and amount of initiators, crosslinking agents, and other monomers. It successfully explained the experimental phenomenon observed thus far in precipitation or dispersion polymerizations that the average diameter of microspheres is increased with the increase of the concentration of initiators, which contradicted the prediction of conventional mechanisms. As an example, the initiator dimethyl 2,2′‐azobisisobutyrate (DMAIB) was dominantly partitioned in ethanol. Thus, the diameter of the PAAm/MAA microspheres was decreased with the increase of the concentration of DMAIB because the formation of microspheres depended on the adsorption of free radicals to the minimonomer droplets. However, the initiator 4,4′‐azobis‐4‐cyanovaleric acid was dominantly partitioned within the minimonomer droplets, thereby increasing the diameter of the microspheres as the concentration of initiator was increased because of the lower efficiency of free radicals. Relative to the initiators, the crosslinking agents showed inverse effects on the diameter and morphology of the microspheres according to the different partitions. The monomer was transferred by the incorporation of minimonomer droplets with growing microspheres. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 2833–2844, 2004  相似文献   

13.
Dispersion RAFT polymerization of styrene in the alcohol/water mixture mediated with the brush macro‐RAFT agent of poly[poly(ethylene oxide) methyl ether vinylphenyl‐co‐styrene] trithiocarbonate [P(mPEGV‐co‐St)‐TTC] with similar molecular weight but different chemical composition is investigated. Well‐controlled RAFT polymerization including an initial slow homogeneous polymerization and a subsequent fast heterogeneous polymerization at almost complete monomer conversion is achieved. The molecular weight of the synthesized block copolymer increases linearly with the monomer conversion, and the polydispersity is relatively narrow (PDI < 1.3). The RAFT polymerization kinetics is dependent on the chemical composition in the brush macro‐RAFT agents, and those with high content of hydrophobic segment lead to fast RAFT polymerization. The growth of the block copolymer nano‐objects during the RAFT polymerization is explored, and various block copolymer nano‐objects such as nanospheres, worms, vesicles and large‐compound‐micelle‐like particles are prepared. The parameters such as the chemical composition in the brush macro‐RAFT agent, the chain length of the solvatophobic block, the concentration of the feeding monomer and the solvent character affecting the size and morphology of the block copolymer nano‐objects are investigated. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 3177–3190  相似文献   

14.
RAFT polymerization of poly(ethylene glycol) methyl ether methacrylate (PEGMA, 1100 g mol?1) was first performed using cyanoisopropyl dithiobenzoate (CPDB). The control of PEGMA homopolymerization, carried out in THF ([PEGMA] = 40 wt %) at 65 °C (reflux) using 2,2′‐Azobis(isobutyronitrile) (AIBN) as initiator, was shown by the linear increase of molar masses and the low polydispersity indices (PDI) observed with conversion and also by the determination of a high chain transfer constant (Ctr = 9.1) for CPDB in this system. Copolymerization of PEGMA with methacrylic acid (MAA) ([PEGMA]/[MAA] = 40/60) was then undertaken first in dioxane at 85 °C. High conversion (89%) was obtained in 3 h without any composition drift and with a good level of control (PDI < 1.40). When the polymerization was performed in water, a strong increase in polymerization rate was observed with almost quantitative conversion (98%) in 2 h without affecting the level of control of the final copolymers (PDI ~ 1.30). These last results were tentatively explained by the formation of hydrophobic domains in which the polymerization occurred as in bulk. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 3045–3055, 2009  相似文献   

15.
We report the facile synthesis of poly(VI‐co‐MAA) superabsorbent polyampholytic hydrogels (VI = N‐vinylimidazole, MAA = methacrylic acid) via plasma‐ignited frontal polymerization (PIFP). On igniting the top surface of the reactants with air plasma, frontal polymerization occurred and poly(VI‐co‐MAA) hydrogels were obtained within minutes. The preparation parameters were investigated, along with swelling capacity, morphology, and chemical structures of poly(VI‐co‐MAA) hydrogels. Interestingly, the hydrogels are superabsorbent in water and show ampholytic characteristic toward pH. Moreover, the hydrogels are able to capture cationic dyes through electrostatic interaction, offering the potential for further development as dye adsorbents for water purification. In addition, nanocomposite hydrogels were obtained by embedding quantum dots (carbon dots or CdS nanocrystals) into the polymer matrix, which endows the nanocomposite hydrogels with favorable fluorescence and potential applications in bioimaging and biosensing. The results indicate that FP can be applied as an alternative means for facile synthesis of multifunctional hydrogels with additional efficiency and energy‐saving. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 912–920  相似文献   

16.
The polymerization of acrylic acid (AA) was performed under 60Co irradiation in the presence of dibenzyl trithiocarbonate at room temperature, and well‐defined poly(acrylic acid) (PAA) with a low polydispersity index was successfully prepared. The gel permeation chromatographic and 1H NMR data showed that this polymerization displays living free‐radical polymerization characteristics: a narrow molecular weight distribution (Mw/Mn = 1.07–1.22), controlled molecular weight, and constant chain‐radical concentration during the polymerization. Using PAA? S? C(?S)? S? PAA as an initiator, the extension reaction of PAA with fresh AA was carried out under 60Co irradiation, and the results indicated that this extension polymerization displayed controlled polymerization behavior. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 3934–3939, 2001  相似文献   

17.
The atom transfer radical polymerization of styrene and methyl methacrylate with FeCl2/iminodiacetic acid as the catalyst system in bulk was successfully implemented at 70 and 110 °C, respectively. The polymerization was controlled: the molecular weight of the resultant polymer was close to the calculated value, and the molecular weight distribution was relatively narrow (weight‐average molecular weight/number‐average molecular weight ∼ 1.5). Block copolymers of polystyrene‐b‐poly(methyl methacrylate) and poly(methyl methacrylate)‐b‐poly(methyl acrylate) were successfully synthesized, confirming the living nature of the polymerization. A small amount of water added to the reaction system increased the reaction rate and did not affect the living nature of the polymerization system. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 4308–4314, 2000  相似文献   

18.
In this work, the poly(methyl methacrylate‐co‐methacrylic acid)/poly(methacrylic acid‐co‐N‐isopropylacrylamide) thermosensitive composite semi‐hollow latex particles was synthesized by three processes. The first process was to synthesize the poly(methyl methacrylate‐co‐methacrylic acid) (poly (MMA‐MAA)) copolymer latex particles by the method of soapless emulsion polymerization. The second process was to polymerize methacrylic acid (MAA), N‐isopropylacrylamide (NIPAAm), and crosslinking agent, N,N′‐methylenebisacrylamide, in the presence of poly(MMA‐MAA) latex particles to form the linear poly(methyl methacrylate‐co‐methacrylic acid)/crosslinking poly(methacrylic acid‐co‐N‐isopropylacrylamide) (poly(MMA‐MAA)/poly(MAA‐NIPAAm)) core–shell latex particles with solid structure. In the third process, part of the linear poly(MMA‐MAA) core of core–shell latex particles was dissolved by ammonia to form the poly(MMA‐MAA)/poly(MAA‐NIPAAm) thermosensitive semi‐hollow latex particles. The morphologies of the semi‐hollow latex particles show that there is a hollow zone between the linear poly(MMA‐MAA) core and the crosslinked poly(MAA‐NIPAAm) shell. The crosslinking agent and shell composition significantly influenced the lower critical solution temperature of poly(MMA‐MAA)/poly(MAA‐NIPAAm) semi‐hollow latex particles. Besides, the poly(MMA‐MAA)/poly(MAA‐NIPAAm) thermosensitive semi‐hollow latex particles were used as carriers to load with the model drug, caffeine. The processes of caffeine loaded into the semi‐hollow latex particles appeared four situations, which was different from that of solid latex particles. In addition, the phenomenon of caffeine released from the semi‐hollow latex particles was obviously different from that of solid latex particles. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 3441–3451  相似文献   

19.
Semi‐interpenetrating network (semi‐IPN) hydrogels, composed of poly(aspartic acid) (PAsp) and poly(acrylic acid) (PAAc) with various ratios of PAsp to AAc, were prepared. In this work, swelling kinetics was investigated through calculating some parameters. The swelling ratios were measured at room temperature, using urea solutions as liquids to be absorbed. Compared to in deionized water, the hydrogels showed larger swelling ratios in urea solutions, which might be attributed to the chemical composition of urea. The equilibrium swelling ratio could achieve 600 g/g, and the equilibrium urea/water contents were more than 0.99. The diffusion exponents were between 0.5 and 0.7, suggesting that the solvent transport into the hydrogel was dominated by both diffusion and relaxation controlled systems. Therefore, the PAsp/PAAc semi‐IPN hydrogels were appropriate to carry substances in a urea/water environment for pharmaceutical, agricultural, environmental, and biomedical applications. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 666–671, 2010  相似文献   

20.
l ‐Ornithine‐based poly(peptides) have been widely utilized in the field of drug delivery, however few studies have been conducted examining the details of polymerization. In this article, the effects of monomer concentration, polymerization kinetics, polymer molecular weight and monomer purity were investigated using l ‐carboxybenzyl (Cbz)‐ornithine as a model monomer. The mechanism of polymerization herein follows the normal amine mechanism to produce poly(peptides) having controlled molecular weights, known chain ends and a narrow polydispersity index (PDI). A preferred monomer concentration range was determined, which required minimal polymerization times and allowed for predictable and reproducible molecular weights with narrow PDIs. The impact of monomer purity on the polymerization was established and monomer purification conditions are reported, which produce high‐purity monomer after a single recrystallization. Additionally, the optimized polymerization conditions and monomer purification protocol were combined with a sequential monomer addition technique to produce high molecular weight poly(ornithine) with a narrow PDI and known chain ends. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 1385–1391  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号