首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report the self‐consistent field theory (SCFT) of the morphology of lamella‐forming diblock copolymer thin films confined in two horizontal symmetrical/asymmetrical surfaces. The morphological dependences of thin films on the polymer‐surface interactions and confinement, such as film thickness and confinement spatial structure, have been systematically investigated. Mechanisms of the morphological transitions can be understood mainly through the polymer‐surface interactions and confinement entropy, in which the plat confinement surface provides a surface‐induced effect. The confinement is expressed in the form of the ratio D/L0, here D is film thickness, and L0 is the period of bulk lamellar‐structure. Much richer morphologies and multiple surface‐induced morphological transitions for the lamella‐forming diblock copolymer thin films are observed, which have not been reported before. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 1–10, 2009  相似文献   

2.
We present results from a numerical study of a coarse-grained model of diblock copolymer (BCP) thin films cast on a chemically patterned surface. The patterned surface contains chemical inhomogeneities with a repeat spacing length scale comparable to the linear size of the BCP molecules. We find that the orientation of the lamellae in the thin film and the overlap of the film morphology with the preassigned surface pattern is strongly influenced by the commensurability between the bulk unconstrained lamellar size λ*, and the linear size of the surface inhomogeneities w. PACS Numbers: 64.60.Cn, 61.41.+e, 64.60.My, 64.75.+g. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 3127–3136, 1998  相似文献   

3.
The morphologies of AB diblock copolymer film between the substrate and surface were investigated via Monte Carlo simulations on simple cubic lattices. The morphological dependence of the diblock copolymer thin film on the thickness, as well as the composition and interactive intensity has been mainly studied. With the increase of A‐segments fraction, various microdomain morphologies including regular parallel stripe‐like, mesh‐like, and normal lamella near the region of the surface were generated in this work. The morphology of thin films of asymmetric diblock copolymer was found to form cylinders in a bulk system when Lz was equal to 30. The morphologies of PS‐b‐PDMS diblock copolymer films have been studied via atomic force microscopy (AFM) and transition electron microscopy (TEM) measurements. The surface morphology of the PS‐b‐PDMS copolymer thin film shows a mesh‐like microphase separated structure, and PDMS continuous phase protruded on the PS dispersed phase. The surface composition of PS‐b‐PDMS copolymer thin films was measured by means of X‐ray photoelectron spectroscopy (XPS) and ATR‐IR. The comparison results show that the experimental observations are in good agreement with the simulation results. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 1835–1845, 2006  相似文献   

4.
We calculate the free energy of an AB diblock copolymer thin film of cylindrical morphology under confined geometry and find that the size of the cylinder can be asymmetric, depending on the film thickness and surface tension. The size of the cylinder right above the surface is slightly smaller than that of the other cylinders. The equilibrium period in this thin film is different from that in the bulk because of the surface effect. The tendency toward asymmetry diminishes as the film thickness increases and the interfacial tension between the major block (A) and the substrate decreases. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 39: 2217–2224, 2001  相似文献   

5.
Time‐resolved real‐space observations of morphology and pattern formation resulting from crystallization of ultrathin films of low‐molecular‐weight poly(ethylene oxide) (PEO) or diblock copolymers containing PEO shed light on the mechanisms of how polymer crystals are formed. We used simple but restricted geometries like thin films of controlled thickness or confinement resulting from block copolymer mesotructures. Under such conditions, we were able to relate the observed morphology and its temporal evolution directly to molecular processes and the kinetics of crystal growth. We demonstrate that changes in the morphology with time are due to different thermal histories and are the consequence of the mestable nature of polymer crystals. Information about the nucleation process was obtained by examining crystal formation in 12‐nm small spherical cells of a block copolymer mesostructure. We discuss the advantages of thin‐film studies for a better understanding of polymer crystallization. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 1869–1877, 2003  相似文献   

6.
The surface morphology of thin bilayer polymer films on top of glass substrates was investigated. The bilayer consists of a blend film of protonated and deuterated polystyrene and an underlying deuterated polystyrene film. Choosing the thickness of the top film larger than 8 times and smaller than 2 times the radius of gyration of the chains enables the determination of film thickness and confinement effects. With diffuse neutron scattering at grazing incidence in the region of total external reflection, a depth sensitivity and a contrast even at the internal polymer–polymer interface was achieved. The underlying film is conformal to the substrate, and depending on the thickness of the top film two different types of roughness correlations are observed. Thin confined films nestle to the underlying polymer films, while the stiffness of thicker bulky films provides an independent morphology. In both cases, annealing above the glass-transition temperature yields an interdiffusion at the internal polymer–polymer interface, and the polymer–air surface remains essentially unchanged with respect to roughness correlations. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 2862–2874, 1999  相似文献   

7.
In this paper, we study the morphology of diblock copolymers with the body‐centered‐cubic (bcc) phase confined between two flat surfaces. Employing the Landau–Brazovskii mean field theory and the single mode approximation, we obtain three amplitude parameters as functions of temperature, surface field strength, and film thickness. Because of the effect of confinement size and the surface inducement, the morphology of confined diblock copolymers is different from the bulk structure. By controlling confinement size and surface field strength, lamella, undulated lamella, cylinder, and distorted cylinder can be observed in the bcc bulk phase of diblock copolymers. Also, we construct a “phase diagram” of confinement‐induced structures at different surface field strengths. We compare the present theoretical results with the other relevant theoretical results. The predictions about these interesting confinement‐induced structures should be observable in the experiments under suitable conditions.

  相似文献   


8.
A series of diblock copolymers of n‐pentyl methacrylate and methyl methacrylate (PPMA/PMMA BCP) with one or two terminal functional groups was prepared by sequential anionic polymerization of PMA and MMA using an allyl‐functionalized initiator and/or and end‐capping with allyl bromide. Allyl functional groups were successfully converted into OH groups by hydroboration. The morphology in bulk was examined by temperature‐dependent small‐angle X‐ray measurements (T‐SAXS) and transmission electron microscopy (TEM) showing that functional groups induced a weak change in d‐spacings L0 as well as in the thermal expansion behavior. T‐SAXS proved that the lamellar morphologies were stable over multiple heating/cooling cycles without order‐disorder transition (ODT) until 300 °C. While non‐functionalized BCP formed parallel lamellae morphologies, additional OH‐termination at the PMMA block forced in very thin films (ratio between film thickness and lamellar d‐spacing below 1) the generation of perpendicular lamellae morphology through the whole film thickness, as shown by Grazing‐incidence small‐angle X‐ray scattering experiments (GISAXS) measurements. Functionalized BCP were successfully used in thin films as templates for silica nanoparticles in an in‐situ sol–gel process. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

9.
Surface‐induced layering of fluorinated and protonated segments in thin films of a main‐chain liquid‐crystalline polymer, consisting of α‐methylstilbene, bridged by a fluorinated group was revealed by neutron reflectometry. The layering was driven by the difference in surface energy of the fluorinated and protonated segments and by the inherent ordering of the polymer. The lower‐surface‐energy fluorinated segments segregated to the air surface, and the protonated segments segregated to the SiOx layer at the Si substrate. The ordering induced by the interface decayed into the film with a characteristic decay length of about 100 Å. The surface‐induced periodicity ranged from 15 to 20 Å, which is approximately equal to the molecular dimension of the repeating unit on the polymer backbone. The magnitude of segregation increased upon annealing in the liquid‐crystalline temperature range. The segregation was retained upon annealing above the bulk order–disorder transition temperature. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 2817–2824, 2002  相似文献   

10.
The self‐assembly of a metallo‐supramolecular PS‐[Ru]‐PEO block copolymer, where ‐[Ru]‐ is a bis‐2,2′:6′,2″‐terpyridine‐ruthenium(II) complex, in thin films was investigated. Metallo‐supramolecular copolymers exhibit a different behavior as compared to their covalent counterparts. The presence of the charged complex at the junction of the two blocks has a strong impact on the self‐assembly, effecting the orientation of the cylinders and ordering process. Poly(ethylene oxide) cylinders oriented normal to the film surface are obtained directly regardless of the experimental conditions over a wide range of thicknesses. Exposure to polar solvent vapors can be used to improve the lateral ordering of the cylindrical microdomains. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 4719–4724, 2008  相似文献   

11.
Efficient functionalization of polymer optical fibers' (POF) surface by a novel block copolymer material toward the development of low‐cost multiagent sensors is presented. The employed poly(styrene sulfonate‐b‐tert‐butylstyrene) (SPS‐b‐PtBS) diblock copolymer possesses two blocks of distinctively different polarity and charge, the hydrophilic SPS which is sensitive to polar substances and the hydrophobic PtBS which is sensitive to organic solvents. The coexistence of two different blocks allows for the detection of a wide variety of agents, ranging from ammonia, and organic solvents, to biomolecules like lysozyme, at room temperature as opposed to alternative usually more complicated techniques, all with the sole use of one sensing medium. Copolymers' high glass transition temperature enables the formation of stable and environmentally robust overlayers. The sensing performance of the material is evaluated experimentally on the customizable platform of POFs, demonstrating fast response, high operational reversibility, and also reusability in successively different testing agents. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2014 , 52, 46–54  相似文献   

12.
The effect of solvent blending on the performance of an anthracene‐containing poly(p‐phenylene‐ethynylene)‐alt‐poly(p‐phenylene‐vinylene) backbone‐based donor polymer with asymmetrically substituted branched 2‐ethylhexyloxy and methyloxy side‐chains in bulk heterojunction solar cells is reported. This copolymer yields relatively high open‐circuit voltages with fullerene‐based electron acceptors. We systematically studied the thin‐film blend morphology and solar cell performance as a function of solvent composition (chlorobenzene to chloroform ratio) and polymer to [6,6]‐phenyl C61‐butyric acid methylester (PCBM) ratio. We combined photophysical investigations with atomic force microscopy and grazing incidence wide‐angle X‐ray scattering to elucidate the solid‐state morphology in thin films. In the investigated polymer system, the blend morphology becomes independent of the supporting solvent for high PCBM concentrations. Deposition from solvent blends rather than from pure chlorobenzene facilitates the beneficial phase separation between polymer and PCBM, leading to improved charge transport properties (short‐circuit currents) at lower PCBM concentrations. © 2013 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2013, 51, 868–874  相似文献   

13.
Combinatorial gradient techniques are used to map the morphology dependence of thin symmetric diblock copolymer films on film thickness and substrate surface energy. An inversion from symmetric to anti‐symmetric lamellar morphology occurs with a progressive change in surface energy. An intermediate neutral region is found between these limiting types of ordering. The width ω of this transitional energy range scales as a power of copolymer mass M, ω M1.9.

Optical photograph of a combinatorial map of the thin‐film block‐copolymer morphology on a film thickness and surface energy gradient. Island and holes on the surface scatter light causing the film to appear cloudy (lighter in color) in the areas where they exist. The darker areas do not have surface features and do not scatter light.  相似文献   


14.
Highly-localized focused laser spike (FLaSk) heating of polymer thin films is a resist- and developer-free alternative to two-dimensional (2D) laser direct write for creating patterns on the single micron or, by exploiting overlap effects, submicron scale. The massive temporal and spatial thermal gradients and resulting thermal Marangoni stresses generated by FLaSk are an effective means for the directed dewetting and patterning of such films. Here, the general applicability of this technique to glassy amorphous polymer thin film systems is investigated through systematic investigation of film thickness, glass transition temperature, and polymer mobility. The results reveal that the important parameters are the film thickness (coupled to the optical heating effects through anti-reflection coating effects) and the high-temperature polymer melt mobility, allowing for generation of single features with linewidths of down to ∼1 μm. Further, the introduction of spatial mobility variations by using polymer brushes, bilayers, and microphase separated block copolymers leads to additional profile manipulation effects (i.e. spontaneous 2D pattern generation and flattened top profiles). © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016, 54, 225–236  相似文献   

15.
A novel temperature‐step experimental method that extends the Bodiguel‐Fretigny liquid dewetting method of investigating polymer thin films is described and results presented from an investigation of thickness effects on the glass transition temperature (Tg) of ultrathin polystyrene (PS) films. Unlike most other methods of thin film investigation, this procedure promises a rapid screening tool to determine the overall profile of Tg versus film thickness for ultrathin polymer films using a limited number of samples. Similar to our prior observations and other literature data, with this new method obvious Tg depression was observed for PS thin films dewetting on both glycerol and an ionic liquid. The results for PS dewetting on the two different liquids are similar indicating only modest effects of the substrate on the Tg‐film thickness relationship. In both instances, the Tg depression is somewhat less than for similar PSs supported on silicon substrates reported in the literature. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2013 , 51, 1343–1349  相似文献   

16.
Through time‐dependent gas transport properties, we have investigated the physical aging process of amorphous glassy polymer films made from a polynorbornene. By combining the concepts of free volume and the kinetic theory of glass stabilization, it was found that the time dependence of the gas permeability could be rationalized through the thickness dependence of the glass transition temperature. A mathematical relationship was developed that directly relates polymer physical aging (tracked by the gas permeability decay) and sample thickness. It was confirmed by permeation measurements with nitrogen and helium that the aging process is accelerated for thin glassy polymer films (about 8000 Å). The theoretical results show that accelerated aging for thin films compared to thick films can be qualitatively predicted, based on the decrease in the glass transition temperature when the film thickness decreases. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 2239–2251, 1999  相似文献   

17.
We present an overview of the recent progress on the phase transition in the block copolymer (BCP) films in terms of the interfacial interactions effects of the substrates and the χ (Flory-Huggins segmental interaction parameter) effects between the two blocks. For the BCP films thinner than a critical thickness (Lc) above which the transition is independent of film thickness, the order-to-disorder transition (ODT) increased or decreased with decreasing film thickness depending on the interfacial interaction types. The rapid and slow changes in the ODT were attributed to the relative magnitude of enthalpic contribution to χ between two blocks. Interestingly, a periodic amplification in the block composition for the BCP films suppressed the compositional fluctuation in the film geometry, resulting in the ODT shifts from the bulk ODTs above Lc. This effect of the BCP films was more illustrated by the ODT shift effects depending on the strength of the preferential interactions on the substrates. © 2013 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2013  相似文献   

18.
Summary: We report the first Monte Carlo simulations on the thin‐film morphology of symmetric diblock copolymers confined between either symmetrically or antisymmetrically stripe‐patterned surfaces. Under suitable surface configurations (where the lamellae can comply with the surface patterns and can have a period close to the bulk lamellar period L0), tilted lamellae are observed for film thicknesses D ≥ 2L0; the checkerboard morphology is obtained for smaller film thicknesses. The A‐B interfaces in the tilted lamellae are basically perpendicular to the surfaces in their immediate vicinity, and exhibit undulations away from them. In some cases, the severe frustration imposed by the two patterned surfaces leads to irregular or unexpected morphologies, which represent locally stable states. The efficient sampling of our expanded grand‐canonical Monte Carlo technique enables us to observe more than one locally stable morphologies and the flipping between them during a single simulation run.

Tilted lamellae between symmetrically patterned surfaces (perpendicular to z) with a surface pattern period of 1.5L0 and a film thickness of 2.67L0. L0 is the bulk lamellar period and the black curves mark the A‐B interfaces.  相似文献   


19.
We reported the synthesis and morphology of a novel alkyne‐functionalized diblock copolymer (di‐BCP) poly(methyl methacrylate‐random‐propargyl methacrylate)‐block‐poly(4‐bromostyrene). The di‐BCPs were synthesized by atom transfer radical polymerization and postpolymerization deprotection, with good control over molecular weight and polydispersity index. Microphase separation in bulk di‐BCPs was confirmed by thermal analysis, small‐angle X‐ray scattering, and transmission electron microscopy. Microphase‐separated morphologies were also observed in thin films, and the orientation of the microdomains can be conveniently controlled by annealing under different solvents. © 2012 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2012  相似文献   

20.
High‐density polymer brushes on substrates exhibit unique properties and functions stemming from the extended conformations due to the surface constraint. To date, such chain organizations have been mostly attained by synthetic strategies of surface‐initiated living polymerization. We show herein a new method to prepare a high‐density polymer brush architecture using surface segregation and self‐assembly of diblock copolymers containing a side‐chain liquid‐crystalline polymer (SCLCP). The surface segregation is attained from a film of an amorphous base polymer (polystyrene, PS) containing a minor amount of a SCLCP‐PS diblock copolymer upon annealing above the glass‐transition temperature. The polystyrene portion of the diblock copolymer can work as a laterally mobile anchor for the favorable self‐assembly on the polystyrene base film.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号