首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Poly(o‐aminobenzyl alcohol) (POABA) was grafted with poly(ethylene oxide)s (PEOs) through the reaction of tosylated PEO with both the hydroxide and amine moieties of reduced POABA. Reduced POABA was prepared through the acid‐mediated polymerization of o‐aminobenzyl alcohol, followed by neutralization with an aqueous ammonium hydroxide solution and reduction with hydrazine. The grafted copolymers were very soluble in common polar solvents, such as chloroform, tetrahydrofuran, and dimethylformamide, and the copolymers with longer PEO side chains (number‐average molecular weight > 164) were even water‐soluble. The conductivities of the doped grafted copolymers decreased with increasing PEO side‐chain length because of the nonconducting PEO and its torsional effect on the POABA backbone. The conductivity of highly water‐soluble POABA‐g‐PEO‐350 was 0.689 × 10?3 S/cm, that is, in the semiconducting range. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 4756–4764, 2004  相似文献   

2.
The atom transfer radical polymerization of methyl methacrylate (MMA) and n‐butyl methacrylate (n‐BMA) was initiated by a poly(ethylene oxide) chloro telechelic macroinitiator synthesized by esterification of poly(ethylene oxide) (PEO) with 2‐chloro propionyl chloride. The polymerization, carried out in bulk at 90 °C and catalyzed by iron(II) chloride tetrahydrate in the presence of triphenylphosphine ligand (FeCl2 · 4H2O/PPh3), led to A–B–A amphiphilic triblock copolymers with MMA or n‐BMA as the A block and PEO as the B block. A kinetic study showed that the polymerization was first‐order with respect to the monomer concentration. Moreover, the experimental molecular weights of the block copolymers increased linearly with the monomer conversion, and the molecular weight distribution was acceptably narrow at the end of the reaction. These block copolymers turned out to be water‐soluble through the adjustment of the content of PEO blocks (PEO content >90% by mass). When the PEO content was small [monomer/macroinitiator molar ratio (M/I) = 300], the block copolymers were water‐insoluble and showed only one glass‐transition temperature. With an increase in the concentration of PEO (M/I = 100 or 50) in the copolymer, two glass transitions were detected, indicating phase separation. The macroinitiator and the corresponding triblock copolymers were characterized with Fourier transform infrared, proton nuclear magnetic resonance, size exclusion chromatography analysis, dynamic mechanical analysis, and differential scanning calorimetry. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 5049–5061, 2005  相似文献   

3.
New biodegradable/biocompatible ABC block copolymers, poly(ethylene oxide)‐b‐poly(glycidol)‐b‐poly(L ,L ‐lactide) (PEO‐PGly‐PLLA), were synthesized. First, PEO‐b‐poly(1‐ethoxyethylglycidol)‐b‐PLLA was synthesized by a successive anionic ring‐opening copolymerization of ethylene oxide, 1‐ethoxyethylglycidyl ether, and L ,L ‐lactide initiated with potassium 2‐methoxyethanolate. In the second step, the 1‐ethoxyethyl blocking groups of 1‐ethoxyethylglycidyl ether were removed at weakly acidic conditions leaving other blocks intact. The resulting copolymers were composed of hydrophilic and hydrophobic segments joined by short polyglycidol blocks with one hydroxyl group in each monomeric unit. These hydroxyl groups may be used for further copolymer transformations. The PEO‐PGly‐PLLA copolymers with a molecular weight of PLLA blocks below 5000 were water‐soluble. Above the critical micellar concentration (ranging from 0.05 to1.0 g/L, depending on the composition of copolymer), copolymers formed macromolecular micelles with a hydrophobic PLLA core and hydrophilic PEO shell. The diameters of the micelles were about 25 nm. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 3750–3760, 2003  相似文献   

4.
Well‐defined diblock and triblock copolymers composed of poly(N‐isopropylacrylamide) (PNIPAM) and poly(ethylene oxide) (PEO) were successfully synthesized through the reversible addition–fragmentation chain transfer polymerization of N‐isopropylacrylamide (NIPAM) with PEO capped with one or two dithiobenzoyl groups as a macrotransfer agent. 1H NMR, Fourier transform infrared, and gel permeation chromatography instruments were used to characterize the block copolymers obtained. The results showed that the diblock and triblock copolymers had well‐defined structures and narrow molecular weight distributions (weight‐average molecular weight/number‐average molecular weight < 1.2), and the molecular weight of the PNIPAM block in the diblock and triblock copolymers could be controlled by the initial molar ratio of NIPAM to dithiobenzoate‐terminated PEO and the NIPAM conversion. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 4873–4881, 2004  相似文献   

5.
The grafting polymerization of styrene initiated by the alkyl chloride groups of poly(CTFE‐alt‐VE) and poly[(CTFE‐alt‐VE)‐co‐(HFP‐alt‐VE] copolymers (where CTFE, HFP, and VE stand for chlorotrifluoroethylene (CTFE), hexafluoropropylene (HFP), and vinyl ether (VE), respectively) followed by the chemical modification of the polystyrene grafts are presented. First, the fluorinated alternating copolymers were produced by radical copolymerization of CTFE (with HFP) and VE. Second, atom transfer radical polymerization enabled the grafting polymerization of styrene in the presence of the poly(CTFE‐alt‐VE)‐macroinitiator using the alkyl chloride group of CTFE as the initiation site. Kinetics of the styrene polymerization indicated that such a grafting had a certain controlled character. For the first time, grafting of polystyrene onto alternating fluorinated copolymers has been achieved. Differential scanning calorimetry thermograms of these graft copolymers exhibited two glass transition temperatures assigned to both amorphous domains of the polymeric fluorobackbone (ranging from ?20 to +56 °C) and the polystyrene grafts (ca. 95 °C). The thermostability of these copolymers increased on grafting. Thermal degradation temperatures at 5% weight loss were ranging from 193 to 305 °C when the polystyrene content varied from 81 to 27%. Third, chloromethylation of the polystyrene grafts followed by the cationization of the chloromethyl dangling groups led to original ammonium‐containing graft copolymers. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

6.
Amphiphilic poly(ethylene oxide)‐block‐poly(isoprene) (PEO‐b‐PI) diblock copolymers were prepared by nitroxide‐mediated polymerization of isoprene from alkoxyamine‐terminal poly(ethylene oxide) (PEO). PEO monomethyl ether (Mn ≈ 5200 g/mol) was functionalized by esterification with 2‐bromopropionyl bromide with subsequent copper‐mediated replacement of the terminal bromine with 2,2,5‐trimethyl‐4‐phenyl‐3‐azahexane‐3‐nitroxide. The resulting PEO‐alkoxyamine macroinitiator was used to initiate polymerization of isoprene in bulk and in solution at 125 °C to yield PEO‐b‐PI block copolymers with narrow molecular weight distributions (Mw/Mn ≤ 1.1). Polymerizations were first order in isoprene through 35% conversion. Micellar aggregates of PEO‐b‐PI in aqueous solution were crosslinked by treatment with a water‐soluble redox initiating system, and persistent micellar structures were observed in the dry state by AFM. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 2977–2984, 2005  相似文献   

7.
The crystallization and melting behavior of a series of poly(glycerol adipate) (PGA) based graft copolymers with either poly(ε‐caprolactone) (PCL), poly(ethylene oxide) (PEO), or PCL‐b‐PEO diblock copolymer side chains (i.e., PGA‐g‐PCL, PGA‐g‐PEO, and PGA‐g‐(PCL‐b‐PEO)) was studied using polarized light optical microscopy (POM), differential scanning calorimetry (DSC), small‐angle X‐ray scattering (SAXS), and wide‐angle X‐ray diffraction (WAXD). These results were compared with the behavior of the corresponding linear analogs (PEO, PCL, and PCL‐b‐PEO). POM revealed that spherulitic morphology was retained after grafting. However, spherulite radius as well as radial growth rate was significantly smaller in the graft copolymers. Evaluation of isothermal crystallization kinetics by means of the Avrami theory revealed that the nucleation density was much higher in the graft copolymers. The DSC results indicated that the degree of crystallinity decreased strongly upon grafting while the melting temperatures of PGA‐g‐PCL and PGA‐g‐PEO were found to be close to the values of neat PCL and PEO, respectively. This was attributed to the absence of specific thermodynamic interactions, and, additionally, to lamella thicknesses being similar to those of the homopolymers. The latter point was confirmed by SAXS measurements. In case of PCL‐b‐PEO diblock copolymers and PGA‐g‐(PCL‐b‐PEO) graft copolymers, the crystallization behavior and thus the resulting lamellar morphology is more complex, and a suitable model was developed based on a combination of DSC, WAXD, and SAXS data. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2013 , 51, 1581–1591  相似文献   

8.
AB‐type block copolymers with poly(trimethylene carbonate) [poly(TMC); A] and poly(ethylene oxide) [PEO; B; number‐average molecular weight (Mn) = 5000] blocks [poly(TMC)‐b‐PEO] were synthesized via the ring‐opening polymerization of trimethylene carbonate (TMC) in the presence of monohydroxy PEO with stannous octoate as a catalyst. Mn of the resulting copolymers increased with increasing TMC content in the feed at a constant molar ratio of the monomer to the catalyst (monomer/catalyst = 125). The thermal properties of the AB diblock copolymers were investigated with differential scanning calorimetry. The melting temperature of the PEO blocks was lower than that of the homopolymer, and the crystallinity of the PEO block decreased as the length of the poly(TMC) blocks increased. The glass‐transition temperature of the poly(TMC) blocks was dependent on the diblock copolymer composition upon first heating. The static contact angle decreased sharply with increasing PEO content in the diblock copolymers. Compared with poly(TMC), poly(TMC)‐b‐PEO had a higher Young's modulus and lower elongation at break. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 4819–4827, 2005  相似文献   

9.
Segmented block copolymers based on poly(ethylene oxide) (PEO) flexible segments and monodisperse crystallizable bisester tetra‐amide segments were made via a polycondensation reaction. The molecular weight of the PEO segments varied from 600 to 4600 g/mol and a bisester tetra‐amide segment (T6T6T) based on dimethyl terephthalate (T) and hexamethylenediamine (6) was used. The resulting copolymers were melt‐processable and transparent. The crystallinity of the copolymers was investigated by differential scanning calorimetry (DSC) and Fourier Transform infrared (FTIR). The thermal properties were studied by DSC, temperature modulated synchrotron small angle X‐ray scattering (SAXS), and dynamic mechanical analysis (DMA). The elastic properties were evaluated by compression set (CS) test. The crystallinity of the T6T6T segments in the copolymers was high (>84%) and the crystallization fast due to the use of monodisperse tetra‐amide segments. DMA experiments showed that the materials had a low Tg, a broad and almost temperature independent rubbery plateau and a sharp flow temperature. With increasing PEO length both the PEO melting temperature and the PEO crystallinity increased. When the PEO segment length was longer than 2000 g/mol the PEO melting temperature was above room temperature and this resulted in a higher modulus and in higher compression set values at room temperature. The properties of PEO‐T6T6T copolymers were compared with similar poly(propylene oxide) and poly(tetramethylene oxide) copolymers. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 4522–4535, 2007  相似文献   

10.
Novel amphiphilic chitosan copolymers with mixed side chains of poly(ε‐caprolactone) and poly(ethylene oxide) (CS‐g‐PCL/PEO) were successfully synthesized by “graft to” approach via click chemistry. The melting and crystallization behaviors and crystalline morphology of CS‐g‐PCL/PEO copolymers can be adjusted by the alteration of the feed ratio of PCL and PEO segments. CS‐g‐PCL/PEO copolymers revealed crystalline morphology different from that of linear alkynyl PCL and alkynyl PEO due to the influence of brush structure of copolymers and the mutual influence of PCL and PEO segments. The hydrophilicity of the CS copolymers can be improved and adjusted by the alteration of the composition of PCL and PEO segments. Moreover, the CS copolymers can self‐assemble into spherical micelles in aqueous solution. Investigation shows that the size of the CS copolymer micelles increased with the increase of the content of hydrophobic PCL segments in copolymers, which indicated that the micellar behavior of the copolymers can be controlled by the adjustment of the ratio of PCL and PEO segments in copolymer. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 3476–3486, 2010  相似文献   

11.
Novel block copolymers, poly(3‐hexylthiophene)‐b‐poly(ethylene oxide) (P3HT‐b‐PEO) were synthesized via Suzuki coupling reaction of P3HT and PEO homopolymers. The copolymers were characterized by NMR, gel permeation chromatography, differential scanning calorimeter, and UV–vis measurements. A series of devices based on the block copolymers with a fullerene derivative were evaluated after thermal or solvent annealing. The device using P3HT‐b‐PEO showed higher efficiency than using P3HT blend after thermal annealing. Phase‐separated structures in the thin films of block copolymer blends were investigated by atomic force microscopy to clarify the relationship between morphologies constructed by annealing and the device performance. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

12.
The synthesis of novel amphiphilic star-graft (SG) copolymers containing hydrophilic poly(oxyethylene) (PEO) side chains attached to a hydrophobic backbone by multifunctional entity is reported. In a first step poly(phthalimidoacrylate-co-styrene) was converted into polymers containing different number of multifunctional branching cites distributed along the main chain by partial aminolysis of the phthalimidoacrylate units with tris(hydroxymethyl)aminomethane. In the second step, these reactive copolymers yielded SG copolymers with different number of star-shaped PEO side groups by reaction with isocyanato terminated methoxy–PEO. The copolymers were characterized by size-exclusion chromatography, IR-, and NMR-spectroscopy. Their thermal properties were examined by thermal gravimetric analysis and differential scanning calorimetry. The studies indicate that the grafting degree and hydrogen bonding determine to a great extent the behavior of the SG copolymers in solid state and in solution. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35: 673–679, 1997  相似文献   

13.
Poly(ethylene imine)‐graft‐poly(ethylene oxide) (PEI‐g‐PEO) copolymers were synthesized via Michael addition reaction between acryl‐terminated poly(ethylene oxide) methyl ether (PEO) and poly(ethylene imine) (PEI). The brush‐like copolymers were characterized by means of Fourier transform infrared spectroscopy and nuclear magnetic resonance spectroscopy. It is found that the crystallinity of the PEO side chains in the copolymers remained unaffected by the PEI backbone whereas the crystal structure of PEO side chains was altered to some extent by the PEI backbone. The crystallization behavior of PEO blocks in the copolymers suggests that the bush‐shaped copolymers are microphase‐separated in the molten state. The PEO side chains of the copolymers were selectively complexed with α‐cyclodextrin (α‐CD) to afford hydrophobic side chains (i.e., PEO/α‐CD inclusion complexes). The X‐ray diffraction (XRD) shows that the inclusion complexes (ICs) of the PEO side chains displayed a channel‐type crystalline structure. It is identified that the stoichiometry of the inclusion complexation of the PEI‐g‐PEO with α‐CD is close to that of the control PEO with α‐CD. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 2296–2306, 2008  相似文献   

14.
Two new amphiphilic star graft copolymers bearing hydrophobic poly(tert‐butyl acrylate) backbone and hydrophilic poly(ethylene oxide) (PEO) side chains with different molecular weights were synthesized by sequential reversible addition fragmentation chain transfer (RAFT) polymerization and single electron transfer‐nitroxide radical coupling (SET‐NRC) reaction under mild conditions. RAFT homopolymerization of tert‐butyl 2‐((2‐bromopropanoyloxy)methyl)acrylate was mediated by a four‐armed chain transfer agent in a controlled way to afford a well‐defined starlike backbone with a narrow molecular weight distribution (Mw/Mn = 1.26). The target poly(tert‐butyl acrylate)‐g‐PEO (PtBA‐g‐PEO) star graft copolymers were synthesized by SET‐NRC reaction between Br‐containing PtBA‐based starlike backbone and PEO end functionalized with 2,2,6,6‐tetramethylpiperidine‐1‐oxyl (TEMPO) group using copper/N,N,N′,N′,N″‐pentamethyldiethylenetriamine as catalytic system at ambient temperature via grafting‐onto strategy. The critical micelle concentration values of the obtained amphiphilic star graft copolymers in aqueous media and brine were determined by fluorescence probe technique using pyrene as probe. Diverse micellar morphologies were formed by varying the content of hydrophilic PEO segment as well as the initial concentration of stock solution. In addition, poly(acrylic acid)‐g‐PEO double hydrophilic star graft copolymers were obtained by selective acidic hydrolysis of hydrophobic PtBA starlike backbone without affecting PEO side chains. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

15.
Butyl rubber‐poly(ethylene oxide) (PEO) graft copolymers with high PEO content (40–83 wt %) were synthesized by the functionalization and activation of the double bond moiety of butyl rubber containing high (7 mol %) isoprene content and subsequent reaction with PEO of different molecular weights from 750 to 5000 g/mol. The properties of these copolymers, along with other butyl rubber‐PEO graft copolymers were studied in films and in aqueous solution. Despite the high PEO content, films of the copolymers were quite stable in water with respect to mass loss and were capable of releasing an encapsulated probe molecule in a manner that was dependent on the PEO content. At high PEO content they were resistant to the adhesion and growth of C2C12 cells. Despite the resistance of films to dissolution, it was possible to prepare nanosized aqueous assemblies via a THF‐water exchange process and the sizes of the assemblies were tuned by their method of preparation. The assemblies were also able to encapsulate a probe molecule and were found to be nontoxic in vitro. Combined, this set of properties makes these new amphiphilic copolymers promising for a wide range of potential applications. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 3383–3394  相似文献   

16.
A series of well‐defined amphiphilic graft copolymers bearing hydrophilic poly(ethylene oxide) (PEO) side chains with tunable grafting densities were synthesized by atom transfer nitroxide radical coupling (ATNRC) reaction using CuBr/PMDETA as catalytic system via the grafting‐onto strategy. PEO side chains were linked to α‐C of carbonyl of polyacrylate‐based backbone, not to the ester side groups as usual, so that every repeating unit of the backbone possessed a pendant steric bulky tert‐butyl group. The critical micelle concentrations of the obtained amphiphilic graft copolymers in aqueous media determined by fluorescence probe technique using pyrene as probe increased with the raising of molecular weights. These amphiphilic graft copolymers with novel chemical structure showed unprecedented diverse nanostructures visualized by transmission electron microscopy in aqueous media and micellar morphologies varied with the changing of experiment parameters. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

17.
Dimethyl 2,6‐anthracene dicarboxylate is used as a comonomer in the synthesis of functional copolymers that are subject to modification with Diels–Alder reactions. The formation of poly(ethylene terephthalate‐co‐2,6‐anthracenate), containing less than 20 mol % of the anthracene‐2,6‐dicarboxylate structural units, provides materials that are tractable and soluble. The anthracene units of the copolymers undergo Diels–Alder reactions with N‐substituted maleimides. The grafting of N‐alkylmaleimides affords soluble, hydrophobic polymers, whereas grafting with maleimide‐terminated poly(ethylene glycol) affords hydrophilic polymers. Because this reaction proceeds below the melting point of the copolymers, the procedure can be applied to thin films, whereby the surface properties are modified. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 3256–3263, 2002  相似文献   

18.
Self‐assembly of amphiphilic ABA random triblock copolymers in water serves as a novel approach to create unique structure micelles connected with flexible linkages. The ABA triblock copolymers consist of amphiphilic random copolymers bearing hydrophilic poly(ethylene glycol) and hydrophobic dodecyl pendants as the A segments and a hydrophilic poly(ethylene oxide) (PEO) as the middle B segment. The A block is varied in dodecyl methacrylate content of 20%–50% and degree of polymerization (DP) of 100‐200. By controlling the composition and DP of the A block, various architectures can be tailor‐made as micelles in water: PEO‐linked double core unimer micelles, PEO‐looped unimer or dimer micelles, and multichain micelles. Those PEO‐linked or looped micelles further exhibit thermoresponsive solubility in water. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 , 57, 313–321  相似文献   

19.
A series of ABC triblock copolymers, that is, polyisoprene‐block‐polystyrene‐block‐poly(ethylene oxide) (PI‐PS‐PEO), PI‐block‐poly(tert‐butyl acrylate)‐block‐PEO (PI‐PtBA‐PEO), and PI‐block‐poly(acrylic acide)‐block‐PEO (PI‐PAA‐PEO) were obtained by combination of anionic technique, atom transfer radical polymerization (ATRP), and single electron transfer nitroxide coupling (SETNRC) reaction. Anionic polymerization of isoprene followed by end capping with ethylene oxide yielded hydroxyl‐terminated PI. After esterification, PI with Br end group was used as a macroinitiator to initiate the polymerization of styrene and tBA by ATRP that was then trapped by 2,2,6,6‐tetramethylpiperidine‐1‐oxyl (TEMPO) group in PEO by SETNRC reaction rapidly with high efficiency in tetrahydrofuran at room temperature. The effect of reaction time and polymer chain length on SETNRC reaction was discussed in detail. In the presence of Cu0/tris[2‐(dimethylamino)ethyl]amine, SETNRC between PI‐PS‐Br and PEO‐TEMPO was carried out with the efficiency of up to 91.6% in 2 h. With the increase in polymer chain length, the efficiency decreased fleetly. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

20.
The synthesis of well‐defined poly(methyl methacrylate)‐block‐poly(ethylene oxide) (PMMA‐b‐PEO) dibock copolymer through anionic polymerization using monohydroxy telechelic PMMA as macroinitiator is described. Living anionic polymerization of methyl methacrylate was performed using initiators derived from the adduct of diphenylethylene and a suitable alkyllithium, either of which contains a hydroxyl group protected with tert‐butyldimethylsilyl moiety in tetrahydrofuran (THF) at ?78 °C in the presence of LiClO4. The synthesized telechelic PMMAs had good control of molecular weight with narrow molecular weight distribution (MWD). The 1H NMR and MALDI‐TOF MS analysis confirmed quantitative functionalization of chain‐ends. Block copolymerization of ethylene oxide was carried out using the terminal hydroxyl group of PMMA as initiator in the presence of potassium counter ion in THF at 35 °C. The PMMA‐b‐PEO diblock copolymers had moderate control of molecular weight with narrow MWD. The 1H NMR results confirm the absence of trans‐esterification reaction of propagating PEO anions onto the ester pendants of PMMA. The micellation behavior of PMMA‐b‐PEO diblock copolymer was examined in water using 1H NMR and dynamic light scattering. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 2132–2144, 2008  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号