首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The direct preparation of proton conducting poly(vinyl chloride) (PVC) graft copolymer electrolyte membranes using atom transfer radical polymerization (ATRP) is demonstrated. Here, direct initiation of the secondary chlorines of PVC facilitates grafting of a sulfonated monomer. A series of proton conducting graft copolymer electrolyte membranes, i.e. poly(vinyl chloride)‐g‐poly(styrene sulfonic acid) (PVC‐g‐PSSA) were prepared by ATRP using direct initiation of the secondary chlorines of PVC. The successful syntheses of graft copolymers were confirmed by 1H‐NMR and FT‐IR spectroscopy. The images of transmission electron microscopy (TEM) presented the well‐defined microphase‐separated structure of the graft copolymer electrolyte membranes. All the properties of ion exchange capacity (IEC), water uptake, and proton conductivity for the membranes continuously increased with increasing PSSA contents. The characterization of the membranes by thermal gravimetric analysis (TGA) also demonstrated their high thermal stability up to 200°C. The membranes were further crosslinked using UV irradiation after converting chlorine atoms to azide groups, as revealed by FT‐IR spectroscopy. After crosslinking, water uptake significantly decreased from 207% to 84% and the tensile strength increased from 45.2 to 71.5 MPa with a marginal change of proton conductivity from 0.093 to 0.083 S cm?1, which indicates that the crosslinked PVC‐g‐PSSA membranes are promising candidates for proton conducting materials for fuel cell applications. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

2.
Phosphoric acid‐doped crosslinked proton‐conducting membranes with high anhydrous proton conductivity, and good chemical stability in phosphoric acid were synthesized and characterized. The synthetic procedure of the acid‐doped composite membranes mainly involves the in situ crosslinking of polymerizable monomer oils (styrene and acrylonitrile) and vinylimidazole, and followed by the sulfonation of pendant imidazole groups with butanesultone, and further doped with phosphoric acid. The resultant phosphoric acid‐doped composite electrolyte membranes are flexible and show high thermal stability and high‐proton conductivity up to the order of 10?2 S cm?1 at 160 °C under anhydrous conditions. The phosphoric acid uptake, swelling degree, and proton conductivity of the composite membranes increase with the vinylimidazole content. The resultant composite membranes also show good oxidative stability in Fenton's reagent (at 70 °C), and quite good chemical stability in phosphoric acid (at 160 °C). The properties of the prepared electrolyte membranes indicate their promising prospects in anhydrous proton‐exchange membrane applications. © 2013 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2013 , 51, 1311–1317  相似文献   

3.
The synthesis, micelle formation, and bulk properties of semifluorinated amphiphilic poly(ethylene glycol)‐b‐poly(pentafluorostyrene)‐g‐cubic polyhedral oligomeric silsesquioxane (PEG‐b‐PPFS‐g‐POSS) hybrid copolymers is reported. The synthesis of amphiphilic PEG‐b‐PPFS block copolymers are achieved using atom transfer radical polymerization (ATRP) at 100 °C in trifluorotoluene using modified poly(ethylene glycol) as a macroinitiator. Subsequently, a proportion of the reactive para‐F functionality on the pentafluorostyrene units was replaced with aminopropylisobutyl POSS through aromatic nucleophilic substitution reactions. The products were fully characterized by 1H‐NMR and GPC. The products, PEG‐b‐PPFS and PEG‐b‐PPFS‐g‐POSS, were subsequently self‐assembled in aqueous solutions to form micellar structures. The critical micelle concentrations (cmc) were estimated using two different techniques: fluorescence spectroscopy and dynamic light scattering (DLS). The cmc was found to decrease concomitantly with the number of POSS particles grafted per copolymer chain. The hydrodynamic particle sizes (Rh) of the micelles, calculated from DLS data, increase as the number of POSS molecules grafted per copolymer chain increases. For example, Rh increased from ~60 nm for PEG‐b‐PPFS to ~80 nm for PEG‐b‐PPFS‐g‐POSS25 (25 is the average number of POSS particles grafted copolymer chain). Static light scattering (SLS) data confirm that the formation of larger micelles by higher POSS containing copolymers results from higher aggregation numbers (Nagg), caused by increased hydrophobicity. The Rg/Rh values, where Rg is the radius of gyration calculated from SLS data, are consistent with a spherical particle model having a core‐shell structure. Thermal characterization by differential scanning calorimetry (DSC) reveals that the grafted POSS acts as a plasticizer; the glass transition temperature (Tg) of the PPFS block in the copolymer decreases significantly with increasing POSS content. Finally, the rhombohedral crystal structure of POSS in PEG‐b‐PPFS‐g‐POSS was verified by wide angle X‐ray diffraction measurements. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 152–163, 2010  相似文献   

4.
New alternating copolymers comprising a chlorotrifluorinated backbone and imidazole‐terminated pendant ethylene oxide groups have been prepared with a view to their use as a component of proton‐conducting membranes in polymer electrolyte fuel cells. A vinyl ether containing an imidazole (Imi) function protected by a benzyl group (BVI) was first synthesized in a three‐step reaction. It was then copolymerized in solution with chlorotrifluoroethylene (CTFE) by conventional radical copolymerization leading to alternating poly(BVI‐alt‐CTFE) copolymers in good yields. Deprotection of the benzyl group under hydrogen produced a chlorotrifluorinated poly(Imi‐alt‐CTFE) copolymer. The polymer was subsequently used to form blend membranes with sulfonated poly(ether ether ketone) (sPEEK). The conductivity of blend membranes of poly (Imi‐alt‐CTFE) with sPEEK lies in the range of 4–10 mS cm?1 at 40–70 °C and, for blend membranes rich in poly(Imi‐alt‐CTFE), is little dependent on relative humidity between 30 and 100%. It is surmised that the polymer and membrane composition favor microstructural phase separation into chlorotrifluorinated polymer backbone domains and regions in which imidazole groups are clustered. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 223–231, 2010  相似文献   

5.
Amphoteric polymers have been studied for various applications such as separation of low molecular weight organic molecules from inorganic salt mixtures, selective ion transport, drug delivery through membranes of biological interest, separation of ionic drugs and proteins, and separation of alcohol and water. Typical amphoteric polymers consist of weak base and weak acid groups. In present study, the copolymerization of 5‐vinyltetrazole (VT) and diisopropyl‐p‐vinylbenzyl phosphate (DIPVBP) via free radical polymerization is studied. The reactivity ratio of VT and DIPVBP, which is calculated from Kelen‐Tudos plot, is 0.251 and 0.345, respectively. The amphoteric copolymer of VT and diisopropyl‐p‐vinylbenzyl phosphonic acid (poly(VT‐co‐VBPA)) is obtained from hydrolysis of the copolymer of VT and DIPVBP (poly(VT‐co‐DIPVBP)). Poly(VT‐co‐VBPA) is thermally stable under 190 °C. The anhydrous proton conductivity of amphoteric poly(VT‐co‐VBPA) can reach 1.54 × 10‐4 S cm?1 at 170 °C with an activation energy of 114.7 kJ mol?1. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 3486–3493  相似文献   

6.
Two chiral amphiphilic diblock copolymers with different relative lengths of the hydrophobic and hydrophilic blocks, poly(6‐O‐p‐vinylbenzyl‐1,2:3,4‐Di‐O‐isopropylidene‐D ‐galactopyranose)‐b‐poly(N‐isopropylacrylamide) or poly(VBCPG)‐b‐poly(NIPAAM) and poly(20‐(hydroxymethyl)‐pregna‐1,4‐dien‐3‐one methacrylate)‐b‐poly(N‐isopropylacrylamide) or poly(MAC‐HPD)‐b‐poly(NIPAAM) were synthesized via consecutive reversible addition‐fragmentation chain‐transfer polymerizations of VBCPG or MAC‐HPD and NIPAAM. The chemical structures of these diblock copolymers were characterized by 1H nuclear magnetic resonance spectroscopy. These amphiphilic diblock copolymers could self‐assemble into micelles in aqueous solution, and the morphologies of micelles were investigated by transmission electron microscopy. By comparison with the lower critical solution temperatures (LCST) of poly(NIPAAM) homopolymer in deionized water (32 °C), a higher LCST of the chiral amphiphilic diblock copolymer (poly(VBCPG)‐b‐poly(NIPAAM)) was observed and the LCST increased with the relative length of the poly(VBCPG) block in the copolymer from 35 to 47 °C, respectively. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 7690–7701, 2008  相似文献   

7.
ABCBA‐type pentablock copolymers of methyl methacrylate (MMA), styrene (S), and isobutylene (IB) were prepared by a three‐step synthesis, which included atom transfer radical polymerization (ATRP) and cationic polymerization: (1) poly(methyl methacrylate) (PMMA) with terminal chlorine atoms was prepared by ATRP initiated with an aromatic difunctional initiator bearing two trichloromethyl groups under CuCl/2,2′‐bipyridine catalysis; (2) PMMA with the same catalyst was used for ATRP of styrene, which produced a poly(S‐b‐MMA‐b‐S) triblock copolymer; and (3) IB was polymerized cationically in the presence of the aforementioned triblock copolymer and BCl3, and this produced a poly(IB‐b‐S‐b‐MMA‐b‐S‐b‐IB) pentablock copolymer. The reaction temperature, varied from ?78 to ?25 °C, significantly affected the IB content in the product; the highest was obtained at ?25 °C. The formation of a pentablock copolymer with a narrow molecular weight distribution provided direct evidence of the presence of active chlorine at the ends of the poly(S‐b‐MMA‐b‐S) triblock copolymer, capable of the initiation of the cationic polymerization of IB in the presence of BCl3. A differential scanning calorimetry trace of the pentablock copolymer (20.1 mol % IB) showed the glass‐transition temperatures of three segregated domains, that is, polyisobutylene (?87.4 °C), polystyrene (95.6 °C), and PMMA (103.7 °C) blocks. One glass‐transition temperature (104.5 °C) was observed for the aforementioned triblock copolymer. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 6098–6108, 2004  相似文献   

8.
Three series of fully aromatic ionomers with naphthalene moieties and pendant sulfobenzoyl side chains were prepared via K2CO3 mediated nucleophilic aromatic substitution reactions. The first series consisted of poly(arylene ether)s prepared by polycondensations of 2,6‐difluoro‐2′‐sulfobenzophenone (DFSBP) and 2,6‐dihydroxynaphthalene or 2,7‐dihydroxynaphthalene (2,7‐DHN). In the second series, copoly(arylene ether nitrile)s with different ion‐exchange capacities (IECs) were prepared by polycondensations of DFSBP, 2,6‐difluorobenzonitrile (DFBN), and 2,7‐DHN. In the third series, bis(4‐fluorophenyl)sulfone was used instead of DFBN to prepare copoly(arylene ether sulfone)s. Thus, all the ionomers had sulfonic acid units placed in stable positions close to the electron withdrawing ketone link of the side chains. Mechanically strong proton‐exchange membranes with IECs between 1.1 and 2.3 meq g−1 were cast from dimethylsulfoxide solutions. High thermal stability was indicted by high degradation temperatures between 266 and 287 °C (1 °C min−1 under air) and high glass transition temperatures between 245 and 306 °C, depending on the IEC. The copolymer membranes reached proton conductivities of 0.3 S cm−1 under fully humidified conditions. At IECs above ∼1.6 meq g−1, the copolymer membranes reached higher proton conductivities than Nafion® in the range between −20 and 120 °C. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

9.
Hybrid organic/inorganic composite polymer electrolyte membranes consisting of a triblock copolymer (tBC) and varying concentrations of heteropolyacid (HPA) were investigated for application in proton exchange membrane fuel cells (PEMFC). An ABC triblock copolymer, that is, polystyrene‐b‐poly(hydroxyethyl acrylate)‐b‐poly (styrene sulfonic acid), PS‐b‐PHEA‐b‐PSSA, at 28:21:51 wt % was synthesized via atom transfer radical polymerization (ATRP) and solution‐blended with a commercial HPA. Upon the incorporation of HPA into the tBC, the symmetric stretching bands of both the SO group (1187 cm?1) and the ? OH group (3440 cm?1) shifted to lower wavenumbers (1158 and 3370 cm?1). The shift in these FTIR absorptions suggest that the HPA particles strongly interact with both the sulfonic acid groups in the PSSA domains and the hydroxyl groups in the PHEA domains. When the weight fraction of HPA was increased to 0.2, the room‐temperature proton conductivity of the composite membrane increased from 0.048 to 0.065 S/cm, presumably because of the intrinsic conductivity of the HPA particles and the enhanced acidity of the sulfonic acid in the tBC. The water uptake of the composite membranes decreased from 130 to 48% with an increase of the HPA weight fraction to 0.4. The decrease in water uptake is likely a result of the decrease in the number of available water absorption sites because of the hydrogen bonding interaction between the HPA particles and the tBC matrix. Scanning electron microscopy and transmission electron microscopy images showed that the HPA nanoparticles with a diameter of 200–300 nm were uniformly distributed throughout the tBC matrix up to an HPA weight fraction of 0.4. Thermal stability of the composite membranes (decomposition temperature > 400 °C) was enhanced as compared with the pristine tBC membrane, presumably because of the strong specific interaction of the HPA particles with the sulfonic acid and hydroxyl groups. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 691–701, 2008  相似文献   

10.
A series of branched/crosslinked sulfonated polyimide (B/C‐SPI) membranes were prepared and evaluated as proton‐conducting ionomers based on the new concept of in situ crosslinking from sulfonated polyimide (SPI) oligomers and triamine monomers. Chemical branching and crosslinking in SPI oligomers with 1,3,5‐tris(4‐aminophenoxy)benzene as a crosslinker gave the polymer membranes very good water stability and mechanical properties under an accelerated aging treatment in water at 130 °C, despite their high ion‐exchange capacity (2.2–2.6 mequiv g?1). The resulting polymer electrolytes displayed high proton conductivities of 0.2–0.3 S cm?1 at 120 °C in water and reasonably high conductivities of 0.02–0.03 S cm?1 at 50% relative humidity. In a single H2/O2 fuel‐cell system at 90 °C, they exhibited high fuel‐cell performances comparable to those of Nafion 112. The B/C‐SPI membranes also displayed good performances in a direct methanol fuel cell with methanol concentrations as high as 50 wt % that were superior to those of Nafion 112. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 3751–3762, 2006  相似文献   

11.
Three series of new aromatic polyether sulfones bearing phenyl, p‐tolyl or carboxyl side groups, respectively, and polar pyridine main chain groups were developed. Most of the polymeric materials presented high molecular weights and excellent solubility in common organic solvents. More importantly, they formed stable, self‐standing membranes that were thoroughly characterized in respect to their thermal, mechanical and oxidative stability, their phosphoric acid doping ability and ionic conductivity. Particularly, the copolymers bearing side p‐tolyl or carboxyl groups fulfill all necessary requirements for application as proton electrolyte membranes in high temperature fuel cells, which are glass transition temperatures higher than 220 °C, thermal stability up to 400 °C, oxidative stability, high doping levels (DLs) and proton conductivities of about 0.02 S/cm. Initial single fuel cell results at high temperatures, 160 °C or 180 °C, using a copolymer bearing p‐tolyl side groups with a relatively low DLs around 200 wt % and dry H2/Air feed gases, revealed efficient power generation with a current density of 0.5 A/cm2 at 500 mV. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

12.
A novel graft copolymer consisting of a poly(vinylidene fluoride‐co‐chlorotrifluoroethylene) backbone and poly(glycidyl methacrylate) side chains, that is, P(VDF‐co‐CTFE)‐g‐PGMA, was synthesized through atom transfer radical polymerization (ATRP) using CTFE units as a macroinitiator. Successful synthesis and microphase‐separated structure of the polymer were confirmed by 1H NMR, FTIR spectroscopy, and TEM. As‐synthesized P(VDF‐co‐CTFE)‐g‐PGMA copolymer was sulfonated by sodium bisulfite, followed by thermal crosslinking with sulfosuccinic acid (SA) via the esterification to produce grafted/crosslinked polymer electrolyte membranes. The IEC values continuously increased with increasing SA content but water uptake increased with SA content up to 10 wt %, above which it decreased again as a result of competitive effect between crosslinking and hydrophilicity of membranes. At 20 wt % of SA content, the proton conductivity reached 0.057 and 0.11 S/cm at 20 and 80 °C, respectively. The grafted/crosslinked P(VDF‐co‐CTFE)‐g‐PGMA/SA membranes exhibited good mechanical properties (>400 MPa of Young's modulus) and high thermal stability (up to 300 °C), as determined by a universal testing machine (UTM) and TGA, respectively. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 1110–1117, 2010  相似文献   

13.
Hybrid organic/inorganic composite polymer electrolyte membranes based on a poly(vinylidene fluoride‐co‐chlorotrifluoroethylene) grafted membrane and varying concentrations of zeolite were investigated for application in proton exchange membrane fuel cells (PEMFC). A proton conducting comb copolymer consisting of poly(vinylidene fluoride‐co‐chlorotrifluoroethylene) backbone and poly(styrene sulfonic acid) (PSSA) side chains, i.e. P(VDF‐co‐CTFE)‐g‐PSSA (graft copolymer) with 47 wt% of PSSA was synthesized using atom transfer radical polymerization (ATRP) and solution blended with zeolite. Upon incorporation of zeolite, the symmetric stretching band of both SO group (1169 cm?1) and the ? OH group (3426 cm?1) shifted to lower wavenumbers. The shift in these FT‐IR spectra suggests that the zeolite particles strongly interact with the sulfonic acid groups of PSSA chains. When the weight percent of zeolite 5A is above 7%, the proton conductivity at room temperature was reduced to 0.011 S/cm. The water uptake of the composite membranes decreased from 234 to 125% with an increase of the zeolite 5A weight percent to 10 wt%. The decrease in water uptake is likely a result of the decrease in the number of available water absorption sites because of the hydrogen bonding interactions between the zeolite particles and the graft copolymer matrix. This behavior is successfully investigated by scanning electron microscopy (SEM). The results of thermal gravimetric analysis (TGA) also showed that all the membranes were stable up to 300°C. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

14.
A novel sulfonated diamine monomer, 2,2′‐bis(p‐aminophenoxy)‐1,1′‐binaphthyl‐6,6′‐disulfonic acid (BNDADS), was synthesized. A series of sulfonated polyimide copolymers containing 30–80 mol % BNDADS as a hydrophilic component were prepared. The copolymers showed excellent solubility and good film‐forming capability. Atomic force microscopy phase images clearly showed hydrophilic/hydrophobic microphase separation. The relationship between the proton conductivity and degree of sulfonation was examined. The sulfonated polyimide copolymer with 60 mol % BNDADS showed higher proton conductivity (0.0945–0.161 S/cm) at 20–80 °C in liquid water. The membranes exhibited methanol permeability from 9 × 10?8 to 5 × 10?7 cm2/s at 20 °C, which was much lower than that of Nafion (2 × 10?6cm2/s). The copolymers were thermally stable up to 300 °C. The sulfonated polyimide copolymers with 30–60 mol % BNDADS showed reasonable mechanical strength; for example, the maximum tensile strength at break of the sulfonated polyimide copolymer with 40 mol % BNDADS was 80.6 MPa under high moisture conditions. The optimum concentration of BNDADS was found to be 60 mol % from the viewpoint of proton conductivity, methanol permeability, and membrane stability. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 222–231, 2007  相似文献   

15.
Diblock copolymer membranes having a fluorinated segment and a sulfonic acid segment were prepared by living radical polymerization, solution casting, and crosslinking, followed by heat treatment. Diblock copolymers of 2,3,4,5,6‐pentafluorostyrene (PFS)/4‐(1‐methylsilacyclobutyl)styrene (SBS) and neopentyl styrenesulfonate (SSPen) (poly(PFS‐co‐SBS)‐b‐polySSPen)s were synthesized by nitoroxy‐mediated living radical polymerization. Self‐standing crosslinked membranes were obtained by casting a THF solution of the block copolymer with Pt catalyst. Heat treatment of the membrane at 230 °C induced decomposition of the neopentyl sulfonate esters to provide block copolymer membranes having a fluorinated segment and a free sulfonic acid segment. It was confirmed that the block copolymer with a high sulfonic acid content exhibited high ion exchange capacity and high proton conductivity as well as high thermal stability. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 4479–4485, 2008  相似文献   

16.
Salt‐containing membranes based on polymethacrylates having poly(ethylene carbonate‐co‐ethylene oxide) side chains, as well as their blends with poly(vinylidene fluoride‐co‐hexafluoropropylene) (PVDF‐HFP), have been studied. Self‐supportive ion conductive membranes were prepared by casting films of methacrylate functional poly(ethylene carbonate‐co‐ethylene oxide) macromonomers containing lithium bis(trifluorosulfonyl)imide (LiTFSI) salt, followed by irradiation with UV‐light to polymerize the methacrylate units in situ. Homogenous electrolyte membranes based on the polymerized macromonomers showed a conductivity of 6.3 × 10?6 S cm?1 at 20 °C. The preparation of polymer blends, by the addition of PVDF‐HFP to the electrolytes, was found to greatly improve the mechanical properties. However, the addition led to an increase of the glass transition temperature (Tg) of the ion conductive phase by ~5 °C. The conductivity of the blend membranes was thus lower in relation to the corresponding homogeneous polymer electrolytes, and 2.5 × 10?6 S cm?1 was recorded for a membrane containing 10 wt % PVDF‐HFP at 20 °C. Increasing the salt concentration in the blend membranes was found to increase the Tg of the ion conductive component and decrease the propensity for the crystallization of the PVDF‐HFP component. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 79–90, 2007  相似文献   

17.
This study reports the characteristics of gel‐type dye‐sensitized solar cells (DSSCs), fabricated with gel‐type electrolyte containing poly‐1,1′‐(methylenedi‐4,1‐phenylene)bismaleimide (PBMI), or poly‐1,1′‐(3,3′‐dimethyl‐1,1′‐biphenyl‐4,4′‐diyl)bismaleimide (PDBBMI), or poly‐N,N′‐(4‐methyl‐1,3‐phenylene)bismaleimide (PMPBMI), prepared by in situ polymerization of the corresponding monomer without an initiator at 30 °C. Incorporating 0.3 wt % content of exfoliated alkyl‐modified nanomica (EAMNM) into PBMI‐gelled electrolyte leads to higher short‐circuit current density (Jsc = 17.14 mA cm?2) and efficiency (η = 7.02%) than that of neat PBMI‐gel electrolyte (Jsc = 15.32 mA cm?2, η = 6.41%). Incorporating 0.3 wt % EAMNM into PBMI‐gelled electrolyte results in remarkably stable device performance under continuous light soaking under one sun (100 mW cm?2) at 55 °C. The efficiency of DSSCs based on PBMI/0.3 wt % EAMNM‐gelled electrolyte drops by only 1.7% (η = 6.93%) after 500 h of continuous light soaking. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

18.
《先进技术聚合物》2018,29(8):2287-2299
There is a huge demand especially for polyvinylidene fluoride (PVDF) and its copolymers to provide high performance solid polymer electrolytes for use as an electrolyte in energy supply systems. In this regard, the blending approach was used to prepare PVDF‐based proton exchange membranes and focused on the study of factor affecting the ir proton conductivity behavior. Thus, a series of copolymers consisting of poly (methyl methacrylate) (PMMA), polyacrylonitrile (PAN), and poly(2‐acrylamido‐2‐methyl‐l‐propanesulfonic acid) (PAMPS) as sulfonated segments were synthesized and blended with PVDF matrix in order to create proton transport sites in PVDF matrix. It was found that addition of PMMA‐co‐PAMPS and PAN‐co‐PAMPS copolymers resulted in a significant increase in porosity, which favored the water uptake and proton transport at ambient temperature. Furthermore, crystallinity degree of the PVDF‐based blend membranes was increased by addition of the related copolymers, which is mainly attributed to formation of hydrogen bonding interaction between PVDF matrix and the synthesized copolymers, and led to a slight decrease in proton conductivity behavior of blend membranes. From impedance data, the proton conductivity of the PVDF/PMMA‐co‐PAMPS and PVDF/PAN‐co‐PAMPS blend membranes increases to 10 and 8.4 mS cm−1 by adding only 50% of the related copolymer (at 25°C), respectively. Also, the blend membranes containing 30% sulfonated copolymers showed a power density as high as 34.30 and 30.10 mW cm−2 at peak current density of 140 and 79.45 mA cm−2 for the PVDF/PMMA‐co‐PAMPS and PVDF/PAN‐co‐PAMPS blend membranes, respectively. A reduction in the tensile strength was observed by the addition of amphiphilic copolymer, whereas the elongation at break of all blend membranes was raised.  相似文献   

19.
Poly(glycidyl methacrylate) (PGMA) was synthesized by the RAFT method in the presence of 2‐cyanoprop‐2‐yl dithiobenzoate (CPDB) chain transfer agent using different [GMA]/[CPDB] molar ratios. The living radical polymerization resulted in controlled molecular weights and narrow polydispersity indices (PDI) of ≈1.1. The polymerization of pentafluorostyrene (PFS) with PGMA as the macro‐RAFT agent yielded narrow PDIs of ≤1.2 at 60 °C and ≤1.5 at 80 °C. The epoxy groups of the PGMA block were hydrolyzed to obtain novel amphiphilic copolymer, poly(glyceryl methacrylate)‐block‐poly(pentafluorostyrene) [PGMA(OH)‐b‐PPFS]. The PGMA epoxy group hydrolysis was confirmed by 1H NMR and FTIR spectroscopy. DSC investigation revealed that the PGMA‐b‐PPFS polymer was amorphous while the PGMA(OH)‐b‐PPFS displayed a high degree of crystallinity.

  相似文献   


20.
Well‐defined amphiphilic graft copolymer with hydrophobic polysulfone (PSU) backbone and hydrophilic poly(acrylic acid) (PAA) side chains were synthesized and characterized. For this purpose, commercially available PSU was converted to azido‐functionalized polymer (PSU‐N3) by successive chloromethylation and azidation processes. Independently, poly(tert‐butyl acrylate) (PtBA) with an alkyne‐end‐group is obtained by using suitable initiator in atom transfer radical polymerization (ATRP). Then, this polymer was successfully grafted onto PSU‐N3 by click chemistry to yield polysulfone‐graft‐poly(tert‐butyl acrylate), (PSU‐g‐PtBA). Finally, amphiphilic polysulfone‐graft‐poly(acrylic acid), (PSU‐g‐PAA), membranes were obtained by hydrolyzing precursor the PSU‐g‐PtBA membranes in trifluoroacetic acid. The final polymer and intermediates at various stages were characterized by 1H NMR, FTIR, GPC, and SEM analyses. Protein adsorption and eukaryotic and prokaryotic cell adhesion on PSU‐g‐PAA were studied and compared to those of PSU‐g‐PtBA and unmodified PSU. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号