首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Poly(ε‐caprolactone)/polylactide blend (PCL/PLA) is an interesting biomaterial because the two component polymers show good complementarity in their physical properties. However, PCL and PLA are incompatible thermodynamically and hence the interfacial properties act as the important roles controlling the final properties of their blends. Thus, in this work, the PCL/PLA blends were prepared by melt mixing using the block copolymers as compatibilizer for the studies of interfacial properties. Several rheological methods and viscoelastic models were used to establish the relations between improved phase morphologies and interfacial properties. The results show that the interfacial behaviors of the PCL/PLA blends highly depend on the interface‐located copolymers. The presence of copolymers reduces the interfacial tension and emulsified the phase interface, leading to stabilization of the interface and retarding both the shape relaxation and the elastic interface relaxation. As a result, besides the relaxation of matrices (τm) and the shape relaxation of the dispersed PLA phase (τF), a new relaxation behavior (τβ), which is attribute to the relaxation of Marangoni stresses tangential to the interface between dispersed PLA phase and matrix PCL, is observed on the compatibilized blends. In contrast to that of the diblock copolymers, the triblock copolymers show higher emulsifying level. However, both can improve the overall interfacial properties and enhance the mechanical strength of the PCL/PLA blends as a result. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 756–765, 2010  相似文献   

2.
Biodegradable cell‐incorporated scaffolds can guide the regeneration process of bone defects such as physiological resorption, tooth loss, and trauma which medically, socially, and economically hurt patients. Here, 0, 5, 10, and 15 wt% fluoridated hydroxyapatite (FHA) nanoparticles containing 25 wt% F? and 75 wt% OH? were incorporated into poly(ε‐caprolactone) (PCL) matrix to produce PCL/FHA nanocomposite scaffolds using electrospinning method. Then, scanning electron microscopy (SEM), X‐ray diffraction (XRD) pattern, and Fourier transform infrared spectroscopy (FTIR) were used to evaluate the morphology, phase structure, and functional groups of prepared electrospun scaffolds, respectively. Furthermore, the tensile strength and elastic modulus of electrospun scaffolds were investigated using the tensile test. Moreover, the biodegradation behavior of electrospun PCL/FHA scaffolds was studied by the evaluation of weight loss of mats and the alternation of pH in phosphate buffer saline (PBS) up to 30 days of incubation. Then, the biocompatibility of prepared mats was investigated by culturing MG‐63 osteoblast cell line and performing MTT assay. In addition, the adhesion of osteoblast cells on prepared electrospun scaffolds was studied using their SEM images. Results revealed that the fiber diameter of prepared electrospun PCL/FHA scaffolds alters between 700 and 900 nm. The mechanical assay illustrated the mat with 10 wt% FHA nanoparticles revealed the highest tensile strength and elastic modulus. The weight loss alternation of mats determined around 1% to 8% after 30 days of incubation. The biocompatibility and cell adhesion of mats improved by increasing the amounts of FHA nanoparticles.  相似文献   

3.
Poly(ethylene‐bε‐caprolactone) (PE‐b‐PCL) diblock copolymers were synthesized by ring‐opening polymerization (ROP) of ε‐caprolactone (CL) with α‐hydroxyl‐ω‐methyl polyethylene (PE‐OH) as a macroinitiator and ammonium decamolybdate (NH4)8[Mo10O34] as a catalyst. Polymerization was conducted in bulk (130–150°C) with high yield (87–97%). Block copolymers with different compositions were obtained and characterized by 1H and 13C NMR, MALDI‐TOF, SAXS, and DSC. End‐group analysis by NMR and MALDI‐TOF indicates the formation of α‐hydroxyl‐ω‐methyl PE‐b‐PCL. The PE‐b‐PCL degradation was studied using thermogravimetric analysis (TGA) and alkaline hydrolysis. The PCL block was hydrolyzed by NaOH (4M), without any effect on the PE segment. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

4.
We report the coating of maghemite (γ‐Fe2O3) nanoparticles with poly(ε‐caprolactone) (PCL) through a covalent grafting to technique. ω‐Hydroxy‐PCL was first synthesized by the ring‐opening polymerization of ε‐caprolactone with aluminum isopropoxide and benzyl alcohol as a catalytic system. The hydroxy end groups of PCL were then derivatized with 3‐isocyanatopropyltriethoxysilane in the presence of tetraoctyltin. The triethoxysilane‐functionalized PCL macromolecules were finally allowed to react on the surface of maghemite nanoparticles. The composite nanoparticles were characterized by diffuse reflectance infrared Fourier transform (DRIFT) spectroscopy, thermal gravimetric analysis (TGA) and differential scanning calorimetry (DSC). Effects of the polymer molar mass and concentration on the amount of polymer grafted to the surface were investigated. Typical grafting densities up to 3 μmol of polymer chains per m2 of maghemite surface were obtained with this grafting to technique. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 6011–6020, 2004  相似文献   

5.
Rheological behavior was examined for biocomposites of rod‐like silk fibroin (SF) fiber and poly(ε‐caprolactone) (PCL) to investigate an effect(s) of the SF fiber network therein on the mechanical properties. At 160 °C where PCL was a homogeneous melt, linear viscoelastic tests revealed that the SF/PCL composites hardly relax to behave essentially as elastic solids (more precisely, plastic solids before yielding) at low frequencies. The corresponding equilibrium modulus G0 increased strongly with the SF volume fraction ?SF (G0 ~ ?) and was attributable to the elastic bending of the SF fibers incorporated in the network. The Doi‐Kuzuu model for non‐Brownian rods was modified for the SF/PCL composites by incorporating the rod–rod contact at equilibrium. The G0 calculated from this model was satisfactorily close to the data, in both ?SF dependence and magnitude, lending support to the assignment of the composite elasticity to the fiber bending. The storage modulus G′ measured under large‐amplitude oscillatory shear (LAOS) was smaller than the linear viscoelastic G′, and this difference between the linear and nonlinear moduli was enhanced for the composites with a larger SF content and at lower frequencies. This nonlinear effect was attributable to a decrease of the effective fiber–fiber contacts sustaining the elasticity under LAOS. Under steady shear, the SF/PCL composites exhibited nonlinear (plastic) flow behavior associated with the stress overshoot, and their apparent viscosity was comparable to/lower than the viscosity of neat PCL matrix. The overshoot became much less significant on application of a second shear immediately after the first shear, while the overshoot was partly recovered after a quiescent rest between the first and second shears. These nonlinear features were attributable to slippage between shear‐oriented fibers and PCL matrix. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 1957–1970, 2009  相似文献   

6.
The poly(3‐hydroxbutyrate‐co‐3‐hydroxyvalerate)/poly(ε‐caprolactone) block copolymers (PHCLs) with three different weight ratios of PCL blocks (38%, named PHCL‐38; 53%, named PHCL‐53; and 60%, named PHCL‐60) were synthesized by using PHBV with two hydroxyl end groups to initiate ring‐opening polymerization of ε‐caprolactone. During DSC cooling process, melt crystallization of PHCL‐53 at relatively high cooling rates (9, 12, and 15 °C min?1) and PHCL‐60 at all the selected cooling rates corresponded to PCL blocks so that PHCL‐53 and PHCL‐60 were used to study the nonisothermal crystallization behaviors of PCL blocks. The kinetics of PCL blocks in PHCL‐53 and PHCL‐60 under nonisothermal crystallization conditions were analyzed by Mo equation. Mo equation was successful in describing the nonisothermal crystallization kinetics of PCL blocks in PHCLs. Crystallization activation energy were estimated using Kissinger's method. The results of kinetic parameters showed that both blocks crystallized more difficultly than corresponding homopolymers. With the increase of PCL content, the crystallization rate of PCL block increased gradually. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2010  相似文献   

7.
Porous poly(ε‐caprolactone) structures have been prepared by leaching of compression moulded salt‐containing polymer precipitates. Coagulation takes place when a PCL solution containing dispersed water‐soluble salt particles is precipitated into an excess of non‐solvent. Porous scaffolds are obtained after leaching of the compression moulded polymer‐salt precipitate. This process yields scaffolds with a very homogeneous pore morphology and independent control of pore size and porosity.  相似文献   

8.
An Erratum has been published for this article in J. Polym. Sci. Part A: Polym. Chem. (2004) 42(22) 5845 New multiblock copolymers derived from poly(L‐lactic acid) (PLLA) and poly(ε‐caprolactone) (PCL) were prepared with the coupling reaction between PLLA and PCL oligomers with ? NCO terminals. Fourier transform infrared (FTIR), 13C NMR, and differential scanning calorimetry (DSC) were used to characterize the copolymers and the results showed that PLLA and PCL were coupled by the reaction between ? NCO groups at the end of the PCL and ? OH (or ? COOH) groups at the end of the PLLA. DSC data indicated that the different compositions of PLLA and PCL had an influence on the thermal and crystallization properties including the glass‐transition temperature (Tg), melting temperature (TM), crystallizing temperature (Tc), melting enthalpy (ΔHm), crystallizing enthalpy (ΔHc), and crystallinity. Gel permeation chromatography (GPC) was employed to study the effect of the composition of PLLA and PCL and reaction time on the molecular weight and the molecular weight distribution of the copolymers. The weight‐average molecular weight of PLLA–PCL multiblock copolymers was up to 180,000 at a composition of 60% PLLA and 40% PCL, whereas that of the homopolymer of PLLA was only 14,000. A polarized optical microscope was used to observe the crystalline morphology of copolymers; the results showed that all polymers exhibited a spherulitic morphology. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 5045–5053, 2004  相似文献   

9.
Blends of poly(ε‐caprolactone) (PCL) with zein (PCL/zein) in different proportions (100/0, 75/25, 50/50, 25/75 and 0/100 wt% containing 5 wt% glycerol) were compared based on their mechanical properties (tensile strength, elongation at break, and Young's modulus), and on their thermal properties, the latter determined by thermogravimetric analysis (TGA) and dynamic mechanical thermal analysis (DMTA). The morphology of the materials was studied by scanning electron microscopy (SEM). Blends of PCL/zein showed reduced tensile strength and elongation at break, but increased Young's modulus compared to the pure polymers, in agreement with the DMTA and SEM results. These findings indicated that PCL and zein were incompatible. TGA showed that the thermal stability was enhanced by the addition of zein to PCL, whereas SEM showed a poor interfacial interaction between the polymers. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

10.
The crystallization of block copolymers (BCPs) under homogeneous and heterogeneous nucleation is currently well understood revealing the strong interplay of crystallization in competition to microphase separation. This article reports investigations on synthesis and crystallization processes in weakly interacting supramolecular pseudo‐BCPs, composed of poly(ε‐caprolactone) (PCL) and poly(isobutylene) (PIB) blocks, connected by a specifically interacting hydrogen bond (thymine/2,6‐diaminotriazine). Starting from ring opening polymerization of ε‐caprolactone, the use of “click”‐chemistry enabled the introduction of thymine endgroups onto PCL polymer, thus generating the fully thymine‐substituted pure PCLs ( 1a , 1b ) as judged via NMR and MALDI analysis. Physical mixing of 1a , 1b with a bivalent, bis(2,6‐diaminotriazine)‐containing molecule ( 2 ) generated the bivalent polymers BC1 and BC2 , whereas mixing of 1a or 1b with the 2,6‐diaminotriazine‐substituted PIB ( 3 ) generated the supramolecular pseudo‐BCPs BC3 and BC4 . Thermal investigations (DSC, Avrami analysis) revealed only minor changes in the crystallization behavior of BC1 – BC4 with Avrami exponents close to three, indicative of a confluence of the growing crystals during the crystallization process. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

11.
Microwave irradiation was applied to synthesize poly(ε‐caprolactam‐co‐ε‐caprolactone) directly from the anionic catalyzed ring opening of two cyclic monomers, ε‐caprolactam and ε‐caprolactone using a variable frequency microwave furnace, programmed to a set temperature and controlled by a pulsed power on–off system. Dielectric properties of ε‐caprolactam, ε‐caprolactone, and their mixture were measured in the microwave range from 0.4 to 3 GHz, showing that both ε‐caprolactam and ε‐caprolactone exhibited effective absorption of microwave energy to induce a fast chemical reaction. The microwave induced anionic copolymerization of ε‐caprolactam and ε‐caprolactone generated copoly(amide‐ester)s in yields as high as 70%. Conventional thermal and microwave copolymerization studies were also conducted for comparison with the microwave results. These studies demonstrated that an effective and efficient microwave method to copolymerize ε‐caprolactam with ε‐caprolactone in higher yield, higher amide content, and higher Tg 's, relative to the thermal process, has been developed. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 1379–1390, 2000  相似文献   

12.
Biodegradable copolymers of poly(lactic acid)‐block‐poly(ε‐caprolactone) (PLA‐b‐PCL) were successfully prepared by two steps. In the first step, lactic acid monomer is oligomerized to low molecular weight prepolymer and copolymerized with the (ε‐caprolactone) diol to prepolymer, and then the molecular weight is raised by joining prepolymer chains together using 1,6‐hexamethylene diisocyanate (HDI) as the chain extender. The polymer was carefully characterized by using 1H‐NMR analysis, gel permeation chromatography (GPC), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), and Fourier transform infrared spectroscopy (FTIR). The results of 1H‐NMR and TGA indicate PLA‐b‐PCL prepolymer with number average molecular weights (Mn) of 4000–6000 were obtained. When PCL‐diols are 10 wt%, copolymer is better for chain extension reaction to obtain the polymer with high molecular weight. After chain extension, the weight average molecular weight can reach 250,000 g/mol, as determined by GPC, when the molar ratio of –NCO to –OH was 3:1. DSC curve showed that the degree of crystallization of PLA–PCL copolymer was low, even became amorphous after chain extended reaction. The product exhibits superior mechanical properties with elongation at break above 297% that is much higher than that of PLA chain extended products. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

13.
To synthesize the copolyester of poly(β‐hydroxybutyrate) (PHB) and poly(?‐caprolactone) (PCL), the transesterification of PHB and PCL was carried out in the liquid phase with stannous octoate as the catalyzer. The effects of reaction conditions on the transesterification, including catalyzer concentration, reaction temperature, and reaction time, were investigated. The results showed that both rising reaction temperature and increasing reaction time were advantageous to the transesterification. The sequence distribution, thermal behavior, and thermal stability of the copolyesters were investigated by 13C NMR, Fourier transform infrared spectroscopy, differential scanning calorimetry, wide‐angle X‐ray diffraction, optical microscopy, and thermogravimetric analysis. The transesterification of PHB and PCL was confirmed to produce the block copolymers. With an increasing PCL content in the copolyesters, the thermal behavior of the copolyesters changed evidently. However, the introduction of PCL segments into PHB chains did not affect its crystalline structure. Moreover, thermal stability of the copolyesters was little improved in air as compared with that of pure PHB. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 1893–1903, 2002  相似文献   

14.
The quasi‐living cationic copolymerization of 3,3‐bis(chloromethyl)oxetane (BCMO) and ε‐caprolactone (ε‐CL), using boron trifluoride etherate as catalyst and 1,4‐butanediol as coinitiator, was investigated in methylene chloride at 0°C. The resulting hydroxyl‐ended copolymers exhibit a narrow molecular weight polydispersity and a functionality of about 2. The reactivity ratios of BCMO (0.26) and ε‐CL (0.47), and the Tg of the copolymers, indicate their statistical character. The synthesis of poly(3,3‐bis(azidomethyl)oxetane‐co‐ε‐caprolactone) from poly(BCMO‐co‐ε‐CL) via the substitution of the chlorine atoms by azide groups, using sodium azide in DMSO at 110°C, occurs without any degradation, but the copolymers decompose at about 240°C. All polymers were characterized by vapor pressure osmometry or steric exclusion chromatography, 1H‐NMR and FTIR spectroscopies, and DSC. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 1027–1039, 1999  相似文献   

15.
Photocurable biodegradable multiblock copolymers were synthesized from poly(ε‐caprolactone) (PCL) diol and poly(L ‐lactide) (PLLA) diol with 4,4′‐(adipoyldioxy)dicinnamic acid (CAC) dichloride as a chain extender derived from adipoyl chloride and 4‐hydroxycinnamic acid, and they were characterized with Fourier transform infrared and 1H NMR spectroscopy, gel permeation chromatography, wide‐angle X‐ray diffraction, differential scanning calorimetry, and tensile tests. The copolymers were irradiated with a 400‐W high‐pressure mercury lamp from 30 min to 3 h to form a network structure in the absence of photoinitiators. The gel concentration increased with time, and a concentration of approximately 90% was obtained in 90–180 min for all the films. The photocuring hardly affected the crystallinity and melting temperature of the PCL segments but reduced the crystallinity of the PLLA segments. The mechanical properties, such as the tensile strength, modulus, and elongation, were significantly affected by the copolymer compositions and gel concentrations. Shape‐memory properties were determined with cyclic thermomechanical experiments. The CAC/PCL and CAC/PCL/PLLA (75/25) films photocured for 30–120 min showed good shape‐memory properties with strain fixity rates and recovery rates of approximately 100%. The formation of the network structure and the crystallization and melting of the PCL segments played very important roles for the typical shape‐memory properties. Finally, the degradation characteristics of these copolymers were investigated in a phosphate buffer solution at 37 °C with proteinase‐k and Pseudomonas cepacia lipase. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 2426–2439, 2005  相似文献   

16.
Novel poly(ε‐caprolactone)‐b‐poly(ethylene glycol)‐b‐poly(ε‐caprolactone) (PCL‐PEG‐PCL) bearing pendant hydrophobic γ‐(carbamic acid benzyl ester) groups (PECB) and hydrophiphilic amino groups (PECN) were synthesized based on the functionalized comonomer γ‐(carbamic acid benzyl ester)‐ε‐caprolactone (CABCL). The thermal gelation behavior of the amphiphilic copolymer aqueous solutions was examined. The phase transition behavior could be finely tuned via the pendant groups, and an abnormal phenomenon occurred that the sol–gel transition temperature shifted to a higher temperature for PECB whereas a lower temperature for PECN. The micelles percolation was adopted to clarify the hydrogel mechanism, and the effect of the pendant groups on the micellization was further investigated in detail. The results demonstrated that the introduction of γ‐(carbamic acid benzyl ester) pendant groups significantly decreased the crystallinity of the copolymer micelles whereas amino pendant groups made the micelles easy to aggregate. Thus, the thermal gelation of PEG/PCL aqueous solution could be finely tuned by the pendant groups, and the pendant groups modified PEG/PCL hydrogels are expected to have great potential biomedical application. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 2571–2581  相似文献   

17.
A series of poly(trimethylenecarbonate‐ε‐caprolactone)‐block‐poly(p‐dioxanone) copolymers were prepared with varying feed rations by using two step polymerization reactions. Poly(trimethylenecarbonate)(ε‐caprolactone) random copolymer was synthesized with stannous‐2‐ethylhexanoate and followed by adding p‐dioxanone monomer as the other block. The ring opening polymerization was carried out at high temperature and long reaction time to get high molecular weight polymers. The monofilament fibers were obtained using conventional melting spun methods. The copolymers were identified by 1H and 13C NMR spectroscopy and gel permeation chromatography (GPC). The physicochemical properties, such as viscosity, molecular weight, melting point, glass transition temperature, and crystallinity, were studied. The hydrolytic degradation of copolymers was studied in a phosphate buffer solution, pH = 7.2, 37 °C, and a biological absorbable test was performed in rats. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 2790–2799, 2005  相似文献   

18.
New amphiphilic graft copolymers that have a poly(ε‐caprolactone) (PCL) biodegradable hydrophobic backbone and poly(4‐vinylpyridine) (P4VP) or poly(2‐(N,N‐dimethylamino)ethyl methacrylate) (PDMAEMA) hydrophilic side chains have been prepared by anionic polymerization of the corresponding 4VP and DMAEMA monomers using a PCL‐based macropolycarbanion as initiator. The water solubility of these amphiphilic copolymers is improved by quaternization, which leads to fully water‐soluble cationic copolymers that give micellar aggregates in deionized water with diameters ranging from 65 to 125 nm. In addition, to improve the hydrophilicity of PCL‐g‐P4VP, grafting of poly(ethylene glycol) (PEG) segments has been carried out to give a water‐soluble double grafted PCL‐g‐(P4VP;PEG) terpolymer.

  相似文献   


19.
Antimicrobial active films based on poly(lactic acid) (PLA) were prepared with poly(ε‐caprolactone) (PCL) and thymol (0, 3, 6, 9, and 12 wt%) by solvent casting methods. The films were characterized by thermal, structural, mechanical, gas barrier, and antimicrobial properties. Scanning electron microscopy analysis revealed that the surface of film became rougher with certain porosity when thymol was incorporated into the PLA/PCL blends. Thymol acted as plasticizers, which reduce the intermolecular forces of polymer chains, thus improving the flexibility and extensibility of the films. The addition of PCL into the pure PLA film decreased the glass transition temperature of the films. The presence of thymol decreased the crystallinity of PLA phase, but did not affect the thermal stability of films. Water vapor barrier properties of films slightly decreased with the increase of thymol loading. The antimicrobial properties of thymol containing films showed a significant activity against Escherichia coli and Listeria monocytogenes. The results indicated the potential of PLA/PCL/thymol composites for applications in antimicrobial packaging. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

20.
Both star‐shaped poly(ε‐caprolactone) (PCL) having 4 arms (4sPCL) and 6 arms (6sPCL) and linear PCL having 1 arm (LPCL) and 2 arms (2LPCL) were synthesized and then investigated for inclusion complexation with α‐cyclodextrin (α‐CD). The supramolecular inclusion complexes (ICs) were in detail characterized by 1H NMR, differential scanning calorimetry, thermogravimetric analysis, wide angle X‐ray diffraction, solid‐state carbon nuclear magnetic resonance spectroscopy using cross‐polarization and magic‐angle spinning, and Fourier transform infrared, respectively. The stoichiometry (CL:CD, mol:mol) of all ICs increased with the increasing branch arm of PCL polymers, and it was in the order of α‐CD‐6sPCL1 ICs > α‐CD‐4sPCL ICs > α‐CD‐2LPCL ICs > α‐CD‐LPCL ICs. All analyses indicated that the branch arms of star‐shaped PCL polymers were included into the hydrophobic α‐CD cavities and their original crystalline properties were completely suppressed. Moreover, the ICs of star‐shaped PCL with α‐CD had a channel‐type crystalline structure similar to that formed between the linear PCL and α‐CD. Furthermore, the thermal stability of the free PCL polymers probably controlled that of the guest polymers included in the ICs. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 4721–4730, 2005  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号