首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Well‐defined tertiary amine‐based pH‐responsive homopolymers and block copolymers were synthesized via reversible addition‐fragmentation chain transfer (RAFT) polymerization using 4‐cyanopentanoic acid dithiobenzoate (CPAD) as the RAFT agent for homopolymers and a poly(ethylene glycol) (PEG) macro‐RAFT agent for the block copolymers. 1H NMR and gel permeation chromatography results confirmed the successful synthesis of these homopolymers and block copolymers. Kinetics studies indicated that the formation of both the homopolymers and the block copolymers were well defined. The pKa titration experiments suggested that the homopolymers and the related block copolymers have a similar pKa. The dynamic light scattering investigation showed that all of the block copolymers underwent a sharp transition from unimers to micelles around their pKa and the hydrodynamic diameter (Dh) was not only dependent on the molecular weight but also on the composition of the block copolymers. The polymer solution of PEG‐b‐PPPDEMA formed the largest micelle compare to the PEG‐b‐PDPAEMA and PEG‐b‐PDBAEMA with a similar molecular weight. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 1010–1022  相似文献   

2.
We report on the preparation of reduction‐responsive amphiphilic block copolymers containing pendent p‐nitrobenzyl carbamate (pNBC)‐caged primary amine moieties by reversible addition–fragmentation chain transfer (RAFT) radical polymerization using a poly(ethylene glycol)‐based macro‐RAFT agent. The block copolymers self‐assembled to form micelles or vesicles in water, depending on the length of hydrophobic block. Triggered by a chemical reductant, sodium dithionite, the pNBC moieties decomposed through a cascade 1,6‐elimination and decarboxylation reactions to liberate primary amine groups of the linkages, resulting in the disruption of the assemblies. The reduction sensitivity of assemblies was affected by the length of hydrophobic block and the structure of amino acid‐derived linkers. Using hydrophobic dye Nile red (NR) as a model drug, the polymeric assemblies were used as nanocarriers to evaluate the potential for drug delivery. The NR‐loaded nanoparticles demonstrated a reduction‐triggered release profile. Moreover, the liberation of amine groups converted the reduction‐responsive polymer into a pH‐sensitive polymer with which an accelerated release of NR was observed by simultaneous application of reduction and pH triggers. It is expected that these reduction‐responsive block copolymers can offer a new platform for intracellular drug delivery. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019, 57, 1333–1343  相似文献   

3.
Novel pH and reduction dual‐sensitive biodegradable polymeric micelles for efficient intracellular delivery of anticancer drugs were prepared based on a block copolymer of methyloxy‐poly(ethylene glycol)‐b‐poly[(benzyl‐l ‐aspartate)‐co‐(N‐(3‐aminopropyl) imidazole‐l ‐aspartamide)] [mPEG‐SS‐P(BLA‐co‐APILA), MPBA] synthesized by a combination of ring‐opening polymerization and side‐chain reaction. The pH/reduction‐responsive behavior of MPBA was observed by both dynamic light scattering and UV–vis experiments. The polymeric micelles and DOX‐loaded micelles could be prepared simply by adjusting the pH of the polymer solution without the use of any organic solvents. The drug release study indicated that the DOX‐loaded micelles showed retarded drug release in phosphate‐buffered saline at pH 7.4 and a rapid release after exposure to weakly acidic or reductive environment. The empty micelles were nontoxic and the DOX‐loaded micelles displayed obvious anticancer activity similar to free DOX against HeLa cells. Confocal microscopy observation demonstrated that the DOX‐loaded MPBA micelles can be quickly internalized into the cells, and effectively deliver the drugs into nuclei. Thus, the pH and reduction dual‐responsive MPBA polymeric micelles are an attractive platform to achieve the fast intracellular release of anticancer drugs. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 1771–1780  相似文献   

4.
Self‐assembled thermo‐ and pH‐responsive poly(acrylic acid)‐b‐poly(N‐isopropylacrylamide) (PAA‐b‐PNIPAM) micelles for entrapment and release of doxorubicin (DOX) was described. Block copolymer PAA‐b‐PNIPAM associated into core‐shell micelles in aqueous solution with collapsed PNIPAM block or protonated PAA block as the core on changing temperature or pH. Complexation of DOX with PAA‐b‐PNIPAM triggered by the electrostatic interaction and release of DOX from the complexes due to the changing of pH or temperature were studied. Complex micelles incorporated with DOX exhibited pH‐responsive and thermoresponsive drug release profile. The release of DOX from micelles was suppressed at pH 7.2 and accelerated at pH 4.0 due to the protonation of carboxyl groups. Furthermore, the cumulative release of DOX from complex micelles was enhanced around LCST ascribed to the structure deformation of the micelles. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 5028–5035, 2008  相似文献   

5.
New Y‐shaped (AB2‐type) amphiphilic copolymers of poly(ethylene glycol) (PEG) with poly(trimethylene carbonate) (PTMC), PEG‐b‐(PTMC)2, were successfully synthesized by the ring‐opening polymerization (ROP) of TMC with bishydroxy‐modified monomethoxy‐PEG (mPEG). First, a bishydroxy functional ROP initiator was synthesized by esterification of acryloyl bromide with mPEG, followed by Michael addition using excess diethanolamine. A series of Y‐shaped amphiphilic PEG‐(PTMC)2 block copolymers were obtained via ROP of TMC using this PEG with bishydroxyl end groups as macroinitiator and ZnEt2 as catalyst. The amphiphilic block copolymers with different compositions were characterized by gel permeation chromatography (GPC) and 1H NMR, and their molecular weight was measured by GPC. The results showed that the molecular weight of Y‐shaped copolymers increased with the increase of the molar ratio of TMC to mPEG‐(OH)2 initiator in feed while the PEG chain length was kept constant. The Y‐shaped copolymer mPEG‐(PTMC)2 could self‐assemble into micelles in aqueous medium and the critical micelle concentration values of the micelles decrease with increase in hydrophobic PTMC block length of mPEG‐(PTMC)2. The in vitro cytotoxicity and controlled drug release properties of the Y‐shaped amphiphilic block copolymers were also investigated. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 8131–8140, 2008  相似文献   

6.
The preparation, characterization, release, and in vitro cytotoxicity of a biodegradable polymeric micellar formulation of paclictaxel (PTX) were investigated. The micelles based on thermosensitive and degradable amphiphilic polyaspartamide derivatives containing pendant aromatic structures (phe‐g‐PHPA‐g‐mPEG) were prepared by a quick heating method without using toxic organic solvent. Dynamic light‐scattering results show that the micelles are stable upon dilution under physiological conditions and the destabilization of the micelles is pH‐dependent and the phe‐g‐PHPA‐g‐mPEG polymers are biodegradable. PTX was loaded into the phe‐g‐PHPAs‐g‐mPEG micelles with encapsulation efficiency of >90%, resulting in a high drug loading content (up to 29%). PTX‐loaded micelles had a mean size around 70 nm with narrow size distribution (polydispersity index, <0.1). The PTX‐loaded micelles showed sustained drug release and obvious anticancer activity similar to Taxol against HepG2 cells, whereas blank micelles were nontoxic. The present results suggest that the thermosensitive and biodegradable phe‐g‐PHPA‐g‐mPEG micelles are a promising delivery system for the hydrophobic drugs. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 3917–3924  相似文献   

7.
The pH‐sensitive tertiary amino groups were introduced to synthesize temperature and pH dual‐sensitive degradable polyaspartamide derivatives (phe/DEAE‐g‐PHPA) containing pendant aromatic structures and ionizable tertiary amino groups. The thermo/pH‐responsive behavior of phe/DEAE‐g‐PHPA polymer can be tuned by adjusting the graft copolymer composition. Due to the pH sensitivity of the phe/DEAE‐g‐PHPA‐g‐mPEG polymer with hydrophilic long PEG chain, the micelles and the anticancer drug‐loaded micelles were prepared by a quick pH‐changing method without using toxic organic solvent. The obtained polymeric micelles, paclitaxel‐loaded micelles and doxorubicin‐loaded micelles were stable under physiological conditions. Both the drug‐loaded micelles showed much faster release at pH 5 than at pH 7.4. The doxorubicin‐loaded micelles showed obvious and better anticancer activity against both HepG2 and HeLa cells than free doxorubicin. Thus these nontoxic, dual thermo‐ and pH‐sensitive phe/DEAE‐g‐PHPA‐g‐mPEG micelles may be a promising anticancer drug delivery system. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 879–888  相似文献   

8.
Biodegradable amphiphilic ABC Y‐shaped triblock copolymer (MPBC) containing PEG, PBLA, and PCL segments was synthesized via the combination of enzymatic ring‐opening polymerization (ROP) of epsilon‐caprolactone, ROP of BLA‐N‐carboxyanhydride and click chemistry, where PEG, PBLA, and PCL are poly(ethylene glycol), poly(benzyl‐l ‐aspartate), and polycaprolactone, respectively. Propynylamine was employed as ROP initiator for the preparation of alkynyl‐terminated PBLA and methyloxy‐PEG with hydroxyl and azide groups at the chain‐end was used as enzymatic ROP initiator for synthesis of monoazido‐midfunctionalized block copolymer mPEG‐b‐PCL. The subsequent click reaction led to the formation of Y‐shaped asymmetric heteroarm terpolymer MPBC. The polymer structures were characterized by different analyses. The MPBC terpolymer self‐assembled into micelles and physically encapsulated drug doxorubicin (DOX) to form DOX‐loaded micelles, which showed good stability and slow drug release. In vitro cytotoxicity study indicated that the MPBC micelles were nontoxic and the DOX‐loaded micelles displayed obvious anticancer activity similar to free DOX against HeLa cells. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 3346–3355  相似文献   

9.
Four types of drug nanoparticles (NPs) based on amphiphilic hyperbranched block copolymers were developed for the delivery of the chemotherapeutic doxorubicin (DOX) to breast cancer cells. These carriers have their hydrophobic interior layer composed of the hyperbranched aliphatic polyester, Boltorn® H30 or Boltorn® H40, that are polymers of poly 2,2‐bis (methylol) propionic acid (bis‐MPA), while the outer hydrophilic shell was composed of about 5 poly(ethylene glycol) (PEG) segments of 5 or 10 kDa molecular weight. A chemotherapeutic drug DOX, was further encapsulated in the interior of these polymer micelles and was shown to exhibit a controlled release profile. Dynamic light scattering and transmission electron microscopy analysis confirmed that the NPs were uniformly sized with a mean hydrodynamic diameter around 110 nm. DOX‐loaded H30‐PEG10k NPs exhibited controlled release over longer periods of time and greater cytotoxicity compared with the other materials developed against our tested breast cancer cell lines. Additionally, flow cytometry and confocal scanning laser microscopy studies indicated that the cancer cells could internalize the DOX‐loaded H30‐PEG10k NPs, which contributed to the sustained drug release, and induced more apoptosis than free DOX did. These findings indicate that the H30‐PEG10k NPs may offer a very promising approach for delivering drugs to cancer cells. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

10.
Environmental switches may be fabricated for the controlled release of pharmaceutical drug using a thermally responsive polymer with the intrinsic chemical and physical nature of stimuli‐sensitive smart materials. Particularly, much attention has been paid to the biomedical applications of poly(N‐isopropyl acrylamide) (PNIPAAm) because of its unique reversible transition at a specific lower critical solution temperature (LCST).Thermally sensitive block copolymers, poly(N‐isopropyl acrylamide‐b‐poly(L ‐lactide‐co‐glycolide) (PNIPAAm‐b‐PLGA), and polyethylene glycol‐poly (lactide‐co‐glycolide) (PEG‐PLGA) triblock copolymers with different compositions and length of PLGA block were synthesized via ring‐opening polymerization of lactide and glycolide in the presence of OH‐terminated PNIPAAm or PEG. The composition and structure of the polymer were determined by NMR and FTIR. The effect of important factors, such as ionic strength, pH, and polymer concentration on the phase transition behavior of temperature‐sensitive polymers, were investigated by cloud point measurements. The resulting thermosensitive polymers were used for the entrapment of a narcotic antagonist drug, naltrexone, as the model drug. The loading efficiency and drug release behavior of naltrexone‐loaded hydrogels were investigated. The naltrexone loaded thermosensitive polymers were able to sustain the release of naltrexone for different periods of time, depending on the polymer composition, and concentration. In vitro release studies showed that these thermosensitive polymers are able to deliver naltrexone in biologically active forms at a controlled rate for 3–8 weeks. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

11.
A novel double brush‐shaped copolymer with amphiphilic polyacrylate‐b‐poly(ethylene glycol)‐b‐poly acrylate copolymer (PA‐b‐PEG‐b‐PA) as a backbone and thermosensitive poly(N‐isopropylacrylamide) (PNIPAM) long side chains at both ends of the PEG was synthesized via an atom transfer radical polymerization (ATRP) route, and the structure was confirmed by FTIR, 1H NMR, and SEC. The thermosensitive self‐assembly behavior was examined via UV‐vis, TEM, DLS, and surface tension measurements, etc. The self‐assembled micelles, with low critical solution temperatures (LCST) of 34–38 °C, form irregular fusiform and/or spherical morphologies with single, double, and petaling cores in aqueous solution at room temperature, while above the LCST the micelles took on more regular and smooth spherical shapes with diameter ranges from 45 to 100 nm. The micelle exhibits high stabilities even in simulated physiological media, with low critical micellization concentration (CMC) up to 5.50, 4.89, and 5.05 mg L?1 in aqueous solution, pH 1.4 and 7.4 PBS solutions, respectively. The TEM and DLS determination reveled that the copolymer micelle had broad size distribution below its LCST while it produces narrow and homogeneous size above the LCST. The cytotoxicity was investigated by MTT assays to elucidate the application potential of the as‐prepared block polymer brushes as drug controlled release vehicles. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

12.
Copper‐catalyzed azide‐alkyne cycloaddition (CuAAC) was used to prepare glycosylated polyethylene (PE)–poly(ethylene glycol) (PEG) amphiphilic block copolymers. The synthetic approach involves preparation of alkyne‐terminated PE‐b‐PEG followed by CuAAC reaction with different azide functionalized sugars. The alkyne‐terminated PE‐b‐PEG was prepared by etherification reaction between hydroxyl‐terminated PE‐b‐PEG (Mn ~ 875 g mol?1) and propargyl bromide and azidoethyl glycosides were prepared by glycosylation of 2‐azidoethanol. Atmospheric pressure solids analysis probe‐mass spectrometry was used as a novel solid state characterization tool to determine the outcome of the CuAAC click reaction and end‐capping of PE‐b‐PEG by the azidoethyl glycoside group. The aqueous solution self‐assembly behavior of these amphiphilic glycosylated polymers was explored by TEM and dye solubilization studies. Carbohydrate‐bearing spherical aggregates with the ability to solubilize a hydrophobic dye were observed. The potential of these amphiphilic glycosylated polymers to self‐assemble via electro‐formation into giant carbohydrate‐bearing polymersomes was also investigated using confocal fluorescence microscopy. An initial bioactivity study of the carbohydrate‐bearing aggregates is furthermore presented. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 5184–5193  相似文献   

13.
A novel drug‐polymer conjugate was prepared by the copper‐catalyzed azide–alkyne cycloaddition reaction between an azide‐functional diblock copolymer and an alkyne‐functional paclitaxel (PTX). The well‐defined azide‐functional diblock copolymer, poly(ethylene glycol) (PEG)‐b‐P(OEGEEMA‐co‐AzPMA), was synthesized via the atom transfer radical polymerization of oligo(ethylene glycol) ethyl ether methacrylate (OEGEEMA) and 3‐azidopropyl methacrylate (AzPMA), using PEG‐Br as macroinitiator and CuBr/PMDETA as a catalytic system. The alkyne‐functional PTX was covalently linked to the copolymer via a click reaction, and the loading content of PTX could be easily tuned by varying the feeding ratio. Transmission electron microscopy and dynamic light scattering results indicated that the drug loaded copolymers could self‐assemble into micelles in aqueous solution. Moreover, the drug release behavior of PEG‐b‐P(OEGEEMA‐co‐AzPMA‐PTX) was pH dependent, and the cumulative release amount of PTX were 50.0% at pH 5.5, which is about two times higher than that at pH 7.4. The in vitro cytotoxicity experimental results showed that the diblock copolymer was biocompatible, with no obvious cytotoxicity, whereas the PTX‐polymer conjugate could efficiently deliver PTX into HeLa and SKOV‐3 cells, leading to excellent antitumor activity. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 366–374  相似文献   

14.
A pH‐sensitive polymer was synthesized by introducing the N‐Boc‐histidine to the ends of a PLGA‐PEG‐PLGA block copolymer. The synthesized polymer was confirmed to be biodegradable and biocompatible, well dissolved in water and forming micelles above the CMC. DOX was employed as a model anticancer drug. In vitro drug release from micelles of N‐Boc‐histidine‐capped PLGA‐PEG‐PLGA exhibited significant difference between pH = 6.2 and pH = 7.4, whereas DOX release from micelles composed of un‐capped virgin polymers was not significantly sensitive to medium pH. Uptake of DOX from micelles of the new polymer into MDA‐MB‐435 solid tumor cells was also observed, and pH sensitivity was confirmed. Hence, the N‐Boc‐histidine capped PLGA‐PEG‐PLGA might be a promising material for tumor targeting.

  相似文献   


15.
In this work, a novel type of block copolymer micelles with K+‐responsive characteristics for targeted intracellular drug delivery is developed. The proposed smart micelles are prepared by self‐assembly of poly(ethylene glycol)‐b‐poly(N‐isopropylacry‐lamide‐co‐benzo‐18‐crown‐6‐acrylamide) (PEG‐b‐P(NIPAM‐co‐B18C6Am)) block copolymers. Prednisolone acetate (PA) is successfully loaded into the micelles as the model drug, with loading content of 4.7 wt%. The PA‐loaded micelles display a significantly boosted drug release in simulated intracellular fluid with a high K+ concentration of 150 × 10−3m , as compared with that in simulated extracellular fluid. Moreover, the in vitro cell experiments indicate that the fluorescent molecules encapsulated in the micelles can be delivered and specifically released inside the HSC‐T6 and HepG2 cells responding to the increase of K+ concentration in intracellular compartments, which confirms the successful endocytosis and efficient K+‐induced intracellular release. Such K+‐responsive block copolymer micelles are highly potential as new‐generation of smart nanocarriers for targeted intracellular delivery of drugs.  相似文献   

16.
This study synthesized thermo‐sensitive amphiphilic block‐graft PNiPAAm‐b‐(PαN3CL‐g‐alkyne) copolymers through ring‐opening polymerization of α‐chloro‐ε‐caprolactone (αClCL) with hydroxyl‐terminated macroinitiator poly(N‐isopropylacrylamide) (PNiPAAm), substituting pendent chlorides with sodium azide. This was then used to graft various kinds of terminal alkynes moieties by means of the copper‐catalyzed Huisgen's 1,3‐dipolar cycloaddition (“click” reaction). 1H NMR, FTIR, and gel permeation chromatography (GPC) was used to characterize these copolymers. The solubility of the block‐graft copolymers in aqueous media was investigated using turbidity measurement, revealing a lower critical solution temperature (LCST) in the polymers. These solutions showed reversible changes in optical properties: transparent below the LCST, and opaque above the LCST. The LCST values were dependant on the composition of the polymer. With critical micelle concentrations (CMCs) in the range of 2.04–9.77 mg L?1, the block copolymers formed micelles in the aqueous phase, owing to their amphiphilic characteristics. An increase in the length of hydrophobic segments or a decrease in the length of hydrophilic segments amphiphilic block‐graft copolymers produced lower CMC values. The research verified the core‐shell structure of micelles by 1H NMR analyses in D2O. Transmission electron microscopy was used to analyze the morphology of the micelles, revealing a spherical structure. The average size of the micelles was in the range of 75–145 nm (blank), and 105–190 nm (with drug). High drug entrapment efficiency and drug loading content were observed in the drug micelles. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

17.
Paclitaxel‐loaded poly(ethylene glycol)‐b‐poly(l ‐lactide (LA)) (PEG‐PLA) micelles were prepared by two methods. One is physical encapsulation of paclitaxel in micelles composed of a PEG‐PLA block copolymer and the other is based on a PEG‐PLA–paclitaxel conjugate, abbreviated as “conjugate micelles”. Their physicochemical characteristics, e.g. critical micelle concentration (CMC), morphology, and micelle size distribution were then evaluated by means of fluorescence spectroscopy, scanning electron microscopy (SEM), and dynamic light scattering (DLS). The results show that the CMC of PEG‐PLA–paclitaxel and PEG‐PLA are 6.31 × 10?4 and 1.78 × 10?3 g L?1, respectively. Both micelles assume a spherical shape with comparable diameters and have unimodal size distribution. Moreover, invitro drug delivery behavior was studied by high performance liquid chromatography (HPLC). The antitumor activity of the paclitaxel‐loaded micelles against human liver cancer H7402 cells was evaluated by 3‐(4,5‐Dimethylthiazol‐2‐yl)‐2,5‐diphenyl tetrazolium bromide (MTT) method. The conjugate micelles show a lower burst release during the initial stage and higher accumulative release amount of paclitaxel after a period of time while the encapsulated ones behave in the opposite way. Both the paclitaxel‐loaded micelles showed comparable anticancer efficacy with the free drug. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

18.
Redox‐responsive core cross‐linked (CCL) micelles of poly(ethylene oxide)‐b‐poly(furfuryl methacrylate) (PEO‐b‐PFMA) block copolymers were prepared by the Diels‐Alder click‐type reaction. First, the PEO‐b‐PFMA amphiphilic block copolymer was synthesized by the reversible addition‐fragmentation chain transfer polymerization. The hydrophobic blocks of PFMA were employed to encapsulate the doxorubicin (DOX) drug, and they were cross‐linked using dithiobismaleimidoethane at 60 °C without any catalyst. Under physiological circumstance, the CCL micelles demonstrated the enhanced structural stability of the micelles, whereas dissociation of the micelles took place rapidly through the breaking of disulfide bonds in the cross‐linking linkages under reduction environment. The core‐cross‐linked micelles showed fine spherical distribution with hydrodynamic diameter of 68 ± 2.9  nm. The in vitro drug release profiles presented a slight release of DOX at pH 7.4, while a significant release of DOX was observed at pH 5.0 in the presence of 1,4‐dithiothreitol. MTT assays demonstrated that the block copolymer did not have any practically cytotoxicity against the normal HEK293 cell line while DOX‐loaded CCL micelles exhibited a high antitumor activity towards HepG2 cells. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 3741–3750  相似文献   

19.
A novel multifunctional amphiphilic graft copolymer has been synthesized consisting of a biodegradable poly(l ‐aspartic acid) backbone that was decorated by water‐soluble poly(ethylene glycol) (PEG) and pH‐responsive poly(N,N‐diethylaminoethyl methacrylate) (PDEAEMA) side‐chains as well as thiol pendant groups. This graft copolymer together with doxorubicin (DOX) formed micelles in water at pH = 10.0 with PDEAEMA and DOX acting as the core and PEG serving as the micellar corona. Upon oxidation, the thiol groups dimerized to form disulfide bonds, thus “locking in” the micellar structure. These crosslinked micelles expanded as the pH was decreased from 7.4 to 5.0 or upon the addition, at pH = 7.4, of glutathione (GSH), a thiol‐containing oligopeptide that is present in cancerous cells and cleaves disulfide bonds. At pH = 5.0, GSH addition triggered the disassembly of the micelles. The expansion and disassembly of the micelles have been determined via in vitro experiments to evaluate their DOX release behavior. More importantly, the graft copolymer micelles could enter cells by means of endocytosis and deliver DOX to the nuclei of ovarian cancer BEL‐7402 cells. Thus, this polymer and its micelles are promising candidates for drug delivery applications. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 1536–1546  相似文献   

20.
Thermosensitive polylactide‐block‐poly(N‐isopropylacrylamide) (t‐PLA‐b‐PNIPAAm) tri‐armed star block copolymers were synthesized by atom transfer radical polymerization (ATRP) of monomer NIPAAm using t‐PLA‐Cl as macroinitiator. The synthesis of t‐PLA‐Cl was accomplished by esterification of star polylactides (t‐PLA) with 2‐chloropropionyl chloride using trimethylolpropane as a center molecule. FT‐IR, 1H NMR, and GPC analyses confirmed that the t‐PLA‐b‐PNIPAAm star block copolymers had well‐defined structure and controlled molecular weights. The block copolymers could form core‐shell micelle nanoparticles due to their hydrophilic‐hydrophobic trait in aqueous media, and the critical micelle concentrations (CMC) were from 6.7 to 32.9 mg L?1, depending on the system composition. The as‐prepared micelle nanoparticles showed reversible phase changes in transmittance with temperature: transparent below low critical solution temperature (LCST) and opaque above the LCST. Transmission electron microscopy (TEM) observations revealed that the micelle nanoparticles were spherical in shape with core‐shell structure. The hydrodynamic diameters of the micelle nanoparticles depended on copolymer compositions, micelle concentrations and media. MTT assays were conducted to evaluate cytotoxicity of the camptothecin‐loaded copolymer micelles. Camptothecin drug release studies showed that the copolymer micelles exhibited thermo‐triggered targeting drug release behavior, and thus had potential application values in drug controlled delivery. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 4429–4439  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号