首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
New hydroxyl‐terminated amphiphilic block copolymers (HO‐ABPs) having pendant t‐butyl groups for pH‐responsiveness and terminal OH groups for bioconjugation are reported. These HO‐ABPs consist of hydrophilic poly(oligo(ethylene oxide) monomethyl ether methacrylate) and hydrophobic poly(t‐butyl methacrylate) blocks and were synthesized by a consecutive atom transfer radical polymerization in the presence of an OH‐terminated bromine initiator. Aqueous self‐assembly of HO‐ABPs resulted in colloidally stable micellar aggregates being capable of encapsulating hydrophobic guest molecules. They were nontoxic to cells and destabilized in response to low pH. A facile bioconjugation of HO‐ABP micelles for active targeting is demonstrated by conjugation with biotin (vitamin H) and competitive assay exhibiting >93% ABP chains conjugated with biotin in each micelle. © 2013 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

2.
Generation 3.5 poly(amido amine) dendron (G3.5) with 16 n‐butyl terminal groups containing an acrylamide monomer (AaUG3.5) was prepared by condensation between an amino focal group in G3.5 and 11‐acrylamidoundecanoic acid. AaUG3.5 was polymerized using poly(2‐methacryloyloxyethyl phosphorylcholine) (pMPC)‐based macro‐chain transfer agent via reversible addition‐fragmentation chain transfer (RAFT) radical polymerization to obtain amphiphilic diblock copolymers with different compositions. The diblock copolymers (PmDn) were composed of a hydrophilic pMPC block and hydrophobic pendant dendron‐bearing block, where P and D represent pMPC and pAaUG3.5, respectively, and m and n represent the degree of polymerization for each block, respectively. P296D1 and P98D3 formed vesicles and large compound micelles and vesicles, respectively, which was confirmed by light scattering measurements and transmission electron microscopic (TEM) observations. The large compound micelles formed from P98D3 could not incorporate hydrophilic guest polymer molecules, because the aggregates did not have a hydrophilic hollow core. In contrast, the vesicles formed from P269D1 could incorporate hydrophilic guest polymer molecules into the hollow core. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 4923–4931  相似文献   

3.
Novel biodegradable amphiphilic graft copolymers containing hydrophobic poly(ester‐carbonate) backbone and hydrophilic poly(ethylene glycol) (PEG) side chains were synthesized by a combination of ring‐opening polymerization and “click” chemistry. First, the ring‐opening copolymerization of 5,5‐dibromomethyl trimethylene carbonate (DBTC) and ε‐caprolactone (CL) was performed in the presence of stannous octanoate [Sn(Oct)2] as catalyst, resulting in poly(DBTC‐co‐CL) with pendant bromo groups. Then the pendant bromo groups were completely converted into azide form, which permitted “click” reaction with alkyne‐terminated PEG by Huisgen 1,3‐dipolar cycloadditions to give amphiphilic biodegradable graft copolymers. The graft copolymers were characterized by proton nuclear magnetic resonance (1H NMR), Fourier transform infrared spectra and gel permeation chromatography measurements, which confirmed the well‐defined graft architecture. These copolymers could self‐assemble into micelles in aqueous solution. The size and morphologies of the copolymer micelles were measured by transmission electron microscopy and dynamic light scattering, which are influenced by the length of PEG and grafting density. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011.  相似文献   

4.
A series of optically active amphiphilic block copolymers were synthesizedby using potassium alkoxide of poly(ethylene glycol) monomethyl ether (MeOPEGO?K+) to initiate the anionic polymerization of N‐{o‐(4‐phenyl‐4,5‐dihydro‐1,3‐oxazol‐2‐yl)phenyl}maleimide [(R)‐PhOPMI]. The PEG‐macroinitiators generated in situ in the reaction between MeOPEGOH and potassium naphthylide in tetrahydrofuran. The synthetic procedure may provide the PEG‐b‐PPhOPMI copolymers with well‐defined structure, as evidenced by gel permeation chromatography, 1H NMR, FTIR, and elemental analysis. In particular, the preparation of block copolymers having a laevorotation or dextrorotation activity was accomplished by changing the feed composition. The micellization was examined for the amphiphilic block copolymers in aqueous milieu by fluorescence spectroscopy, dynamic light scattering, and circular dichroism. The results indicate that the copolymers could form regular spherical micelles with core‐shell structure when the hydrophilic component was long enough; in contrast, the copolymers containing shorter PEG segments formed aggregates in large dimension due to the considerable interaction between hydrophobic PPhOPMI components. Also, it was found that the aggregated structure of the polymeric micelles is strongly dependent on the medium nature and the polymer concentration. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 1025–1033, 2008  相似文献   

5.
New poly(ethylene oxide)‐based block copolymers (ssBCs) with a random copolymer block consisting of a reduction‐responsive disulfide‐labeled methacrylate (HMssEt) and a thermoresponsive di(ethylene glycol)‐containing methacrylate (MEO2MA) units were synthesized. The ratio of HMssEt/MEO2MA units in the random P(MEO2MA‐co‐HMssEt) copolymer block enables the characteristics of well‐defined ssBCs to be amphiphilic or thermoresponsive and double hydrophilic. Their amphiphilicity or temperature‐induced self‐assembly results in nanoaggregates with hydrophobic cores having different densities of pendant disulfide linkages. The effect of disulfide crosslinking density on morphological variation of disulfide‐crosslinked nanogels is investigated. In response to reductive reactions, the partial cleavage of pendant disulfide linkages in the hydrophobic cores converts the physically associated aggregates to disulfide‐crosslinked nanogels. The occurrence of in‐situ disulfide crosslinks provides colloidal stability upon dilution. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 2057–2067  相似文献   

6.
A series of amphiphilic thermoresponsive copolymers was synthesized by group transfer polymerization. Seven copolymers were prepared based on the nonionic hydrophobic n‐butyl methacrylate (BuMA), the ionizable hydrophilic and thermoresponsive 2‐(dimethylamino)ethyl methacrylate (DMAEMA) and the nonionic hydrophilic poly(ethylene glycol)methyl methacrylate (PEGMA). In particular, one diblock copolymer and six tricomponent copolymers of different architectures and compositions, one random and five triblock copolymers, were synthesized. The polymers and their precursors were characterized in terms of their molecular weight and composition using gel permeation chromatography and proton nuclear magnetic resonance spectroscopy, respectively. Aqueous solutions of the polymers were studied by turbidimetry, hydrogen ion titration, and light scattering to determine their cloud points, pKas, and hydrodynamic diameters and investigate the effect of the polymers' composition and architecture. The thermoresponsive behavior of the copolymers was also studied. By increasing the temperature, all polymer solutions became more viscous, but only one polymer, the one with the highest content of the hydrophobic BuMA, formed a stable physical gel. Interestingly, the thermoresponsive behavior of these triblock copolymers was affected not only by the terpolymers' composition but also by the terpolymers' architecture. These findings can facilitate the design and engineering of injectable copolymers for tissue engineering that could enable the in situ formation of physical gels at body temperature. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 775–783, 2010  相似文献   

7.
We report amphiphilic folded polymers with imprinted nanocavities for selective molecular recognition in water. For this, a molecular imprinting technique is applied to the polymer synthesis: amphiphilic polymer micelles interacting with template molecules are crosslinked in water to fix the folded architecture and memorize the template structure within the polymers; the removal of the templates provides imprint polymers bearing template-specific nanospaces. Here, a hydrophilic dye bearing two anionic groups, Orange G (OG), is used as a model template. For the imprinting, we design amphiphilic random copolymers bearing hydrophilic poly(ethylene glycol) (PEG) chains, hydrophobic olefin groups, and quaternary ammonium groups that can interact with the template. The copolymers were prepared by living radical polymerization and post functionalization. In the presence of OG and methyl blue (MB), the imprinted nanocavity polymers simultaneously capture both of the dyes in water. The total number of encapsulated dyes increased with increasing the number of polymer-bound quaternary ammonium groups. The selectivity of OG against MB increased with the crosslinking density, while imprint polymers encapsulated OG more efficiently than nonimprint polymers. © 2020 Wiley Periodicals, Inc. J. Polym. Sci. 2020 , 58, 215–224  相似文献   

8.
A series of well‐defined amphiphilic graft copolymers bearing hydrophobic poly(tert‐butyl acrylate) backbone and hydrophilic poly[poly(ethylene glycol) methyl ether methacrylate)] (PPEGMEMA) side chains were synthesized by sequential reversible addition fragmentation chain transfer (RAFT) polymerization and single‐electron‐transfer living radical polymerization (SET‐LRP) without any polymeric functional group transformation. A new Br‐containing acrylate monomer, tert‐butyl 2‐((2‐bromoisobutanoyloxy)methyl)acrylate (tBBIBMA), was first prepared, which can be homopolymerized by RAFT to give a well‐defined PtBBIBMA homopolymer with a narrow molecular weight distribution (Mw/Mn = 1.15). This homopolymer with pendant Br initiation group in every repeating unit initiated SET‐LRP of PEGMEMA at 45 °C using CuBr/dHbpy as catalytic system to afford well‐defined PtBBIBMA‐g‐PPEGMEMA graft copolymers via the grafting‐from strategy. The self‐assembly behavior of the obtained graft copolymers in aqueous media was investigated by fluorescence spectroscopy and TEM. These copolymers were found to be stimuli‐responsive to both temperature and ions. Finally, poly(acrylic acid)‐g‐PPEGMEMA double hydrophilic graft copolymers were obtained by selective acidic hydrolysis of hydrophobic PtBA backbone while PPEGMEMA side chains kept inert. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

9.
Amphiphilic self‐folding random copolymers exhibit different solution behaviors depending on the identity of the hydrophobic/hydrophilic units. Herein, it is demonstrated that changing the hydrophilic unit from poly(ethylene glycol) to the sugar trehalose causes increased discrepancy in the polarity difference with a fluorinated hydrophobic segment and changes the aggregation state of the polymer in water. The PEG‐fluorinated and trehalose/PEG‐fluorinated amphiphilic random copolymers were the most efficient at encapsulating a fluorinated agrochemical. The small‐molecule agrochemical exerts a strong influence on the self‐assembly of the polymers, demonstrating that fluorous interactions result in not only intramolecular self‐folding behavior but also intermolecular polymer association to form well‐defined nanoparticles. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 , 57, 352–359  相似文献   

10.
Amphiphilic block‐graft copolymers mPEG‐b‐P(DTC‐ADTC‐g‐Pal) were synthesized by ring‐opening polymerization of 2,2‐dimethyltrimethylene carbonate (DTC) and 2,2‐bis(azidomethyl)trimethylene carbonate (ADTC) with poly(ethylene glycol) monomethyl ether (mPEG) as an initiator, followed by the click reaction of propargyl palmitate and the pendant azido groups on the polymer chains. Stable micelle solutions of the amphiphilic block‐graft copolymers could be prepared by adding water to a THF solution of the polymer followed by the removal of the organic solvent by dialysis. Dynamic light scattering measurements showed that the micelles had a narrow size distribution. Transmission electron microscopy images displayed that the micelles were in spherical shape. The grafted structure could enhance the interaction of polymer chains with drug molecules and improve the drug‐loading capacity and entrapment efficiency. Further, the amphiphilic block‐graft copolymers mPEG‐b‐P(DTC‐ADTC‐g‐Pal) were low cytotoxic and had more sustained drug release behavior. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

11.
Poly(N‐isopropylacrylamide) (PNIPAAm) homopolymers synthesized by reversible addition–fragmentation chain transfer polymerization were used as macro‐chain‐transfer agents to synthesize smart amphiphilic block copolymers with a switchable hydrophilic–hydrophobic block of PNIPAAm and a hydrophilic block of poly(N‐dimethylacrylamide). All polymers were characterized by gel permeation chromatography, 1H NMR, and differential scanning calorimetry. The reversible micelles formed by the block copolymers of various compositions in aqueous solutions were characterized by 1H NMR, dynamic light scattering, and tensiometry. Micelles were observed in the aqueous solutions when the temperature was increased to 40 °C because of the collapse of the PNIPAAm structure, which led to a PNIPAAm hydrophobic block. The drug loading capacity was illustrated with the use of the solvatochromic Reichardt's dye and measured by ultraviolet–visible. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 3643–3654, 2005  相似文献   

12.
A new kind of dendronized polymer brush with metallo‐supramolecular polymer side chains was fabricated by a combination of macromonomer and graft‐to approach. The alternating copolymers of maleic anhydride and styryl macromonomers pendant with Fréchet‐type dendrons of three generations were reported previously. In this article, terpyridine groups were introduced along the backbone of the dendronized polymers through the amidolysis of anhydride groups. The terpyridine functionalized PEO linear chains were then incorporated through the complexation of terpyridine and Ru(II) ion. Thus, dendronized polymer brushes with amphiphilic properties were synthesized. AFM analysis showed worm‐like single molecular morphologies of the polymers of three generations, and 1H NMR analysis indicated that such molecular brushes had an amphiphilic nature in solution. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 3303–3310, 2007  相似文献   

13.
For the precision synthesis of primary amino functional polymers, cationic polymerization of a phthalimide‐containing vinyl ether monomer precursor, 2‐vinyloxyethyl phthalimide (PIVE), was examined using a base‐assisting initiating system. Living polymerization of PIVE in CH2Cl2 in the presence of 1,4‐dioxane as an added base yielded nearly monodispersed polymers (Mw/Mn < 1.1) and higher molecular weight polymers, which have never been obtained using other initiating systems. Furthermore, block copolymers with hydrophobic or hydrophilic groups could be prepared. The deprotection of the pendant phthalimide groups gave well‐defined pH‐responsive polymers with pendant primary amino groups. Dual‐stimuli–responsive block copolymers having a pH‐responsive polyamine segment and a thermosensitive segment self‐assembled in water in response to both pH and temperature. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 1207–1213, 2010  相似文献   

14.
A new stratagem for the synthesis of amphiphilic graft copolymers of hydrophilic poly(ethylene oxide) as the main chain and hydrophobic polystyrene as the side chains is suggested. A poly(ethylene oxide) with pending 2,2,6,6‐tetramethylpiperidine‐1‐oxyls [poly(4‐glycidyloxy‐2,2,6,6‐tetramethylpiperidine‐1‐oxyl‐co‐ethylene oxide)] was first prepared by the anionic ring‐opening copolymerization of ethylene oxide and 4‐glycidyloxy‐2,2,6,6‐tetramethylpiperidine‐1‐oxyl, and then the graft copolymerization of styrene was completed with benzoyl peroxide as the initiator in the presence of poly(4‐glycidyloxy‐2,2,6,6‐tetramethylpiperidine‐1‐oxyl‐co‐ethylene oxide). The polymerization of styrene was under control, and comblike, amphiphilic poly(ethylene oxide)‐g‐polystyrene was obtained. The copolymer and its intermediates were characterized with size exclusion chromatography, 1H NMR, and electron spin resonance in detail. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 3836–3842, 2006  相似文献   

15.
A series of amphiphilic cationic random copolymers, namely poly[2‐(methacryloyloxy)ethyl trimethylammonium chloride‐co‐stearyl methacrylate] or poly(MADQUAT‐co‐SMA), have been synthesized via conventional free‐radical copolymerization using 2,2′‐azobisisobutyronitrile (AIBN) as initiator and n‐dodecanethiol as chain transfer agent. The resultant products were then characterized by FT‐IR, 1H NMR, MALDI‐TOF MS measurements. From the number‐average molecular weights of the copolymers, we can conclude that these copolymers have oligomeric structure with a limited number of hydrophilic and hydrophobic moieties in a short polymer chain. The reactivity ratios (rMADQUAT = 0.83, rSMA = 0.25) between the hydrophilic MADQUAT monomer and the hydrophobic SMA monomer were calculated by the Finemann and Ross method, which was based on the results of 1H NMR analysis. The surface activity of the random copolymers was studied by the combination of surface tension and contact angle measurement, and the results indicated that these copolymers possess relatively high surface activity. The critical aggregation concentrations (cac) of the copolymers in aqueous solution were determined by fluorescence probe method as well as surface tension measurement. The different nanoparticles of poly(MADQUAT‐co‐SMA) copolymers formed in pure water or ethanol‐water mixture were proved by the particle size and size distribution in the measurement of dynamic light scattering (DLS). Furthermore, using transmission electron microscopy (TEM), we could observe various self‐assembly morphologies of these random copolymer. All these results show that the amphiphilic cationic random copolymers have a good self‐assembly behavior, even if they are ill‐defined copolymers. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 4670–4684, 2009  相似文献   

16.
Self‐assembly of amphiphilic ABA random triblock copolymers in water serves as a novel approach to create unique structure micelles connected with flexible linkages. The ABA triblock copolymers consist of amphiphilic random copolymers bearing hydrophilic poly(ethylene glycol) and hydrophobic dodecyl pendants as the A segments and a hydrophilic poly(ethylene oxide) (PEO) as the middle B segment. The A block is varied in dodecyl methacrylate content of 20%–50% and degree of polymerization (DP) of 100‐200. By controlling the composition and DP of the A block, various architectures can be tailor‐made as micelles in water: PEO‐linked double core unimer micelles, PEO‐looped unimer or dimer micelles, and multichain micelles. Those PEO‐linked or looped micelles further exhibit thermoresponsive solubility in water. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 , 57, 313–321  相似文献   

17.
A series of polyallene‐based well‐defined amphiphilic graft copolymers, poly(6‐methyl‐1,2‐heptadiene‐4‐ol)‐g‐poly(2‐(diethylamino)ethyl methacrylate) (PMHDO‐g‐PDEAEMA), was synthesized through the grafting‐from technique. First, double‐bond‐containing PMHDO backbone bearing pendant hydroxyls was prepared via [(η3‐allyl)NiOCOCF3]2‐initiated living coordination polymerization of 6‐methyl‐1,2‐heptadiene‐4‐ol (MHDO). The pendant hydroxyls in the homopolymer were then reacted with 2‐chloropropionyl chloride to give PMHDO‐Cl macroinitiator. Finally, hydrophilic PDEAEMA side chains were formed by single electron transfer‐living radical polymerization (SET‐LRP) of 2‐(diethylamino)ethyl methacrylate (DEAEMA) in THF/H2O initiated by the macroinitiator using CuCl/Me6TREN as catalytic system to afford PMHDO‐g‐PDEAEMA graft copolymers. The narrow molecular weight distributions (Mw/Mn ≤ 1.35) and kinetics experiment showed the controllability of SET‐LRP graft copolymerization of DEAEMA. The critical micelle concentration (cmc) of PMHDO‐g‐PDEAEMA amphiphilic graft copolymer in aqueous media was determined by fluorescence probe technique and the relationships between cmc and pH or salinity were also investigated. Micellar morphologies were preliminarily explored using transmission electron microscopy. © 2013 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

18.
A series of novel “jellyfish‐like” graft copolymers with chitooligosaccharide (COS) as shorter backbone and poly(ε‐caprolactone) as longer branches were synthesized using ring‐opening polymerization of ε‐caprolactone via a protection‐polymerization‐deprotection procedure with trimethylsilylchitooligosaccharide as intermediate and triethylaluminum as catalyst precursor. The obtained chitooligosaccharide‐graft‐poly(ε‐caprolactone) polymers possess amphiphilic structure with hydrophilic COS backbone and hydrophobic polycaprolactone branches. Because of this unique “jellyfish‐like” structure, these graft copolymers could self‐assemble to form various morphologies of aggregates in a mixture solution of water and tetrahydrofuran. The transmission electron microscopy studies revealed that the formed aggregates exhibited necklace‐like, flower‐like onion vesicle, and tubular morphologies. It is found that the hydrogen‐bonding formed by the hydroxyl and amino groups remained on the COS backbone played an important role during the aggregation of these graft copolymers, and their morphologies were changed with the varying length of poly (ε‐caprolactone) branches, the concentration of the graft copolymer, and the self‐assembly process. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 4889–4904, 2008  相似文献   

19.
The relationships between the chemical structures and hydration environment of the polymers can provide significant insight into the water‐amphiphilic polymer interactions. Here, the hydrophobicity of amphiphilic block copolymers poly(ethylene tartaramide‐b‐alkyl isocyanate) is gradually tuned by using of a series of pendant alkyl (isopropyl, n‐butyl, cyclopentyl, and cyclohexyl) groups. Dynamics of hydration probed by low‐field NMR relaxometry exhibits a heterogeneous environment of water molecules, corresponding to tightly bound water with slow re‐orientational mobility and loosely bound water with fast re‐orientational mobility. Progressively larger amounts of bound water are present in the copolymers, ongoing from pendant isopropyl, n‐butyl, cyclopentyl, and finally to cyclohexyl group. Water in the copolymer bearing the cyclohexyl group has a significantly high partial specific heat capacity. Therefore, hydrophobic interaction between the polymer and water is enhanced when the hydrophobicity of the polymer is increased, resulting in considerable hydrophobic hydration with decreased mobility of the bound water. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2017 , 55, 138–145  相似文献   

20.
The structuring role of benzene‐1,3,5‐tricarboxamide (BTA) groups for the catalytic activity of single chain polymeric nanoparticles in water was investigated in the transfer hydrogenation of ketones. To this end, a set of segmented, amphiphilic copolymers was prepared, which comprised oligo(ethylene glycol) side chains to impart water solubility, BTA and/or lauryl side chains to induce hydrophobicity and diphenylphosphinostyrene (SDP) units in the middle part as a ligand to bind a ruthenium catalyst. All copolymers were obtained by reversible addition‐fragmentation chain transfer (RAFT) polymerization and showed low dispersities (Mw/Mn = 1.23–1.38) and controlled molecular weights (Mn = 44–28 kDa). A combination of circular dichroism (CD) spectroscopy and dynamic light scattering (DLS) showed that all copolymers fold into a single chain polymeric nanoparticles (SCPNs) as a result of the helical self‐assembly of the pendant BTA units and/or hydrophilic–hydrophobic phase separation. To create catalytic sites, RuCl2(PPh3)3 was incorporated into the copolymers. The Cotton effects of the copolymers before and after Ru(II) loading were identical, indicating that the helical self‐assembly of the BTA units and the complexation of SDP ligands and Ru(II) occurs in an orthogonal manner. DLS revealed that after Ru(II) loading, SDP‐bearing copolymers retained their single chain character in water, while copolymers lacking SDP units clustered into larger aggregates. The Ru(II) loaded SCPNs were tested in the transfer hydrogenation of cyclohexanone. This study reveals that BTA induced stack formation is not crucial for SCPN formation and catalytic activity; SDP‐bearing copolymers folded by Ru(II) complexation and hydrophobic pendants suffice to provide hydrophobic, isolated reaction pockets around Ru(II) complexes. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 12–20  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号