首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
(Solid + liquid) phase equilibria (SLE) and (liquid + liquid) phase equilibria (LLE) for the binary systems: ionic liquid (IL) 1-butyl-3-methylimidazolim tosylate (p-toluenesulfonate) {[BMIM][TOS] + water, an alcohol (ethanol, or 1-butanol, or 1-hexanol, or 1-octanol, or 1-decanol), or n-hexane, or an aromatic hydrocarbons (benzene, or toluene, or ethylbenzene, or propylbenzene, or thiophene)} have been determined at ambient pressure. A dynamic method was used over a broad range of mole fractions and temperatures from (230 to 340) K. For the binary systems containing water, or an alcohol, simple eutectic diagrams were observed with complete miscibility in the liquid phase. As usual, with increasing chain length of the alcohol the solubility decreases. In the case of mixtures {IL + n-hexane, or benzene, or alkylbenzene, or thiophene} the eutectic systems with mutual immiscibility in the liquid phase with an upper critical solution temperature (UCST) were detected. The basic thermal properties of the pure IL, i.e. melting and glass-transition temperatures, as well as the enthalpy of fusion have been measured using a differential scanning microcalorimetry technique (DSC). Density at high temperatures was determined and extrapolated to 298.15 K. Well-known UNIQUAC, Wilson and NRTL equations have been used to correlate experimental SLE data sets for alcohols and water. For the systems containing immiscibility gaps {IL + n-hexane, or benzene, or alkylbenzene, or thiophene}, parameters of the LLE correlation equation have been derived using only the NRTL equation.  相似文献   

2.
Ambient pressure (solid + liquid) equilibria (SLE) and (liquid + liquid) equilibria (LLE) of binary systems--ionic liquid (IL) tetra- n-butylphosphonium p-toluenesulfonate + 1-alcohol (1-butanol, 1-hexanol, 1-octanol, 1-decanol, or 1-dodecanol), benzene, or n-alkylbenzene (toluene, ethylbenzene, n-propylbenzene)-have been determined by using dynamic method in a broad range of mole fractions and temperatures from 250 to 335 K. For binaries containing alcohol, simple eutectic diagrams were observed with complete miscibility in the liquid phase. Only in the case of system [IL + n-propylbenzene] was mutual immiscibility with an upper critical solution temperature (UCST) with low solubility of the IL in the alcohol and high solubility of the alcohol in the IL detected. The basic thermal properties of pure IL, i.e., melting and glass-transition temperatures as well as enthalpy of melting, have been measured with differential scanning microcalorimetry technique (DSC). Well-known UNIQUAC, Wilson, NRTL, NRTL1, and NRTL2 equations have been fitted to obtain experimental data sets. For the system containing immiscibility gap [IL + n-propylbenzene], parameters of the equations have been derived only from SLE data. As a measure of goodness of correlations, root-mean square deviations of temperature have been used. These experimental results were compared to the previously measured binary systems with tetra- n-butylphosphonium methanesulfonate. Changing anion from methanesulfonate to p-toluenesulfonate decreases solubilities in systems with alcohols and increases the solubilities in binary systems with benzene and alkylbenzenes.  相似文献   

3.
The sufficient review of the existing literature of the 1-alkyl-1-methylppiperidinium-based ionic liquids has been presented. The phase diagrams for the binary systems of {1-butyl-1-methylpiperidinium thiocyanate [BMPIP][SCN] + an alcohol (1-hexanol, 1-heptanol, 1-octanol, 1-nonanol, 1-decanol, 1-dodecanol), or + water, or + aliphatic hydrocarbons (n-hexane, n-heptane, n-octane), or + cyclohexane, or, + cycloheptane, or + aromatic hydrocarbons (benzene, toluene, ethylbenzene)} and for the binary systems of {1-ethyl-1-methylpiperidinium bis{(trifluoromethyl)sulfonyl}imide [EMPIP][NTf2] + an alcohol (ethanol, 1-propanol, 1-butanol, 1-hexanol, 1-heptanol, 1-octanol, 1-nonanol), or + water} have been determined at atmospheric pressure using a dynamic method. The influence of an alcohol chain length was discussed for these ionic liquids. A systematic decrease in the solubility was observed with an increase of the alkyl chain length of an alcohol. (Solid + liquid) phase equilibria with complete miscibility in the liquid phase region were observed for the systems involving water and the alcohols for the thiocyanate-based ionic liquid. Opposite, the bis{(trifluoromethyl)sulfonyl}imide-based ionic liquid reveal the immiscibility gap in the liquid phase. The correlation of the experimental data has been carried out using the NRTL equation. The phase diagrams reported here have been compared to the systems published earlier with the 1-alkyl-1-methylpiperidinium-based ionic liquids. The influence of the cation and anion on the phase behaviour has been discussed. The basic thermal properties of pure ILs, i.e. melting temperature and the enthalpy of fusion, the solid-solid phase transition temperature and enthalpy have been measured using a differential scanning microcalorimetry technique.  相似文献   

4.
The new quinolinium ionic liquid has been synthesised as a continuation of our work with quinolinium-based ionic liquids (ILs). The work includes specific basic characterisation of synthesized compounds: N-hexylquinolinium bromide, [HQuin][Br] and N-hexylquinolinium bis{(trifluoromethyl)sulfonyl}imide [HQuin][NTf2] by NMR spectra, elementary analysis and water content. The basic thermal properties of the pure [HQuin][NTf2] i.e. melting and glass-transition temperatures, the enthalpy of fusion as well as heat capacity have been measured using a differential scanning microcalorimetry technique (DSC) and thermal analysis instrument (TA). Densities and viscosities were determined as a function of temperature. Phase equilibria for the binary systems: {[HQuin][NTf2]) + aromatic hydrocarbon (benzene, or toluene, or ethylbenzene, or n-propylbenzene), or an alcohol (1-butanol, or 1-hexanol, or 1-octanol, or 1-decanol)} have been determined at ambient pressure. A dynamic method was used over a broad range of mole fractions and temperatures from (270 to 320) K. For all the binary systems with benzene and alkylbenzenes, the eutectic diagrams were observed with immiscibility gap in the liquid phase beginning from (0.13 to 0.28) mole fraction of the IL with very high an upper critical solution temperature (UCST). For mixtures with alcohols, the complete miscibility was observed for 1-butanol and immiscibility with UCST in the liquid phase for the remaining alcohols. The typical dependence was observed, that with increasing chain length of an alcohol the solubility decreases. The well-known NRTL equation was used to correlate experimental (solid + liquid), SLE and (liquid + liquid), LLE phase equilibria data sets. For the systems containing immiscibility gaps, (IL + an alcohol) parameters of the LLE correlation were used to the prediction of SLE.  相似文献   

5.
The (solid + liquid) phase equilibrium (SLE) and (liquid + liquid) phase equilibrium (LLE) for the binary systems ionic liquid (IL) N-hexyl-3-methylpyridinium tosylate (p-toluenesulfonate), {([HM3Py][TOS] + water, or an alcohol (1-butanol, or 1-hexanol, or 1-octanol, or 1-decanol), or an aromatic hydrocarbon (benzene, toluene, or ethylbenzene, or propylbenzene), or an alkane (n-hexane, n-heptane, n-octane)} have been determined at ambient pressure using a dynamic method. Simple eutectic systems with complete miscibility in the liquid phase were observed for the systems involving water and alcohols. The phase equilibrium diagrams of IL and aromatic or aliphatic hydrocarbons exhibit eutectic systems with immiscibility in the liquid phase with an upper critical solution temperature as for most of the ILs. The correlation of the experimental data has been carried out using the UNIQUAC, Wilson and the non-random two liquid (NRTL) correlation equations. The results reported here have been compared with analogous phase diagrams reported by our group previously for systems containing the tosylate-based ILs.  相似文献   

6.
Quinolinium ionic liquid has been prepared from 1-butylquinolinium bromide as a substrate. The work includes specific basic characterization of synthesized compound by NMR spectra, elementary analysis and water content. The basic thermal properties of the pure IL, i.e. melting and glass-transition temperatures, as well as the enthalpy of fusion have been measured using a differential scanning microcalorimetry technique (DSC). (Solid + liquid) phase equilibria (SLE) and (liquid + liquid) phase equilibria (LLE) for the binary systems: ionic liquid (IL) N-butylquinolinium bis{(trifluoromethyl)sulfonyl}imide, {([BQuin][NTf2]) + aromatic hydrocarbon (benzene, or toluene, or methylbenzene, or propylbenzene, or thiophene), or an alcohol (ethanol, or 1-butanol, or 1-hexanol, or 1-octanol, or 1-dodecanol)} have been determined at ambient pressure. A dynamic method was used over a broad range of mole fractions and temperatures from (260 to 330) K. For the binary systems, the simple eutectic diagrams were observed with immiscibility in the liquid phase with an upper critical solution temperature (UCST). For mixtures with alcohols, it was observed that with increasing chain length of an alcohol the solubility decreases and the UCST increases. In the case of mixture (IL + benzene, or alkylbenzene, or thiophene) the eutectic systems with mutual immiscibility in the liquid phase with very high UCSTs were observed. These points were not detectable with our method and they were observed at low ionic liquid mole fraction. Densities at high temperatures were determined and extrapolated to T = 298.15 K. Well-known UNIQUAC, and NRTL equations have been used to correlate experimental SLE data sets. For the systems containing immiscibility gaps {IL + an alcohol} parameters of the LLE correlation equation have been derived using only the NRTL equation.  相似文献   

7.
This work is a continuation of our wide ranging investigation on quinolinium based ionic liquids (ILs). The study includes specific basic characterisation of the synthesized compounds N-octylquinolinium bromide, [OQuin][Br] and N-octylquinolinium bis{(trifluoromethyl)sulfonyl}imide [OQuin][NTf2] by NMR spectra, elementary analysis and water content. Differential scanning calorimetry (DSC) measurements gave us properties of the pure [OQuin][NTf2] i.e. melting and glass-transition temperatures, the enthalpy of fusion as well as heat capacity at the glass transition. Densities and viscosities were determined as a function of temperature. The temperature-composition phase diagrams of 10 binary mixtures composed of organic solvent dissolved in the IL: {[OQuin][NTf2] + aromatic hydrocarbon (benzene, or thiophene, or toluene, or ethylbenzene, or n-propylbenzene), or an alcohol (1-butanol, or 1-hexanol, or 1-octanol, or 1-decanol, or 1-dodecanol)} were measured at ambient pressure. A dynamic method was used over a broad range of mole fractions and temperatures from (250 to 370) K. For mixtures with benzene and alkylbenzenes, the immiscibility gap in the liquid phase in a low mole fraction of the IL was observed with upper critical solution temperature (UCST) higher than the boiling point of the solvent. In the system with thiophene, the immiscibility gap is lower and UCST was measured. For binary mixtures with alcohols, complete miscibility in the liquid phase was observed for 1-butanol and 1-hexanol. In the systems with longer chain alcohols, the immiscibility gap with UCST was noted. Typical behaviour for ILs was observed with an increase of the chain length of an alcohol the solubility decreases. The well-known NRTL equation was used to correlate experimental (solid + liquid), SLE and (liquid + liquid), LLE phase equilibrium data sets.  相似文献   

8.
A new isoquinolinium ionic liquid (IL) has been synthesised as a continuation of our work with quinolinium-based ionic liquids (ILs). The work includes specific basic characterization of synthesized compounds: N-isobutylquinolinium bromide, [BiQuin][Br] and N-isobutylquinolinium bis{(trifluoromethyl)sulfonyl}imide [BiQuin][NTf2] by NMR spectra, elementary analysis and water content. The basic thermal properties of the pure [BiQuin][NTf2], i.e. melting and glass-transition temperatures, the enthalpy of fusion as well as heat capacity at glass transition have been measured using a differential scanning microcalorimetry technique (DSC). Densities and viscosities were determined as a function of temperature. The temperature-composition phase diagrams of 8 binary mixtures composed of organic solvent dissolved in the IL: {[BiQuin][NTf2] + aromatic hydrocarbon (benzene, or toluene, or ethylbenzene, or n-propylbenzene), or an alcohol (1-butanol, or 1-hexanol, or 1-octanol, or 1-decanol)} were measured at ambient pressure. A dynamic method was used over a broad range of mole fraction and temperature from (270 to 320) K. For all the binary systems with benzene and alkylbenzenes, the eutectic diagrams were observed with an immiscibility gap in the liquid phase existing at low mole fraction of the IL with a very high upper critical solution temperature (UCST). For mixtures with alcohols, complete miscibility was observed for 1-butanol and also an immiscibility gap with UCST in the liquid phase for the remaining alcohols. The typical dependence was observed that with increasing chain length of an alcohol, the solubility decreases. The well-known NRTL equation was used to correlate experimental (solid + liquid), SLE and (liquid + liquid), LLE phase equilibrium data sets.  相似文献   

9.
A general strategy to determine enthalpies of formation of protic ionic liquids, based solely on enthalpy of solution measurements, was conceived and tested for 1-methylimidazolium ethanoate, leading to Δ(f)H°(m){[Hmim][O(2)CCH(3)], 1} = -(425.7 ± 1.2) kJ mol(-1). This result in conjunction with the enthalpy of formation of gaseous 1-methylimidazole (mim) proposed in this work, Δ(f)H°(m)(mim, g) = 126.5 ± 1.1 kJ mol(-1), and Δ(f)H°(m)(CH(3)COOH, g) taken from the literature, allowed the calculation of the enthalpy of the vaporisation process [Hmim][O(2)CCH(3)](l) → mim(g) + CH(3)COOH(g) as Δ(vap)H°(m){[Hmim][O(2)CCH(3)]} = 119.4 ± 3.0 kJ mol(-1). The agreement between this value and Δ(vap)H°(m){[Hmim][O(2)CCH(3)]} = 117.3 ± 0.5 kJ mol(-1), obtained for the direct vaporisation of [Hmim][O(2)CCH(3)], by Calvet-drop microcalorimetry, gives a good indication that, as previously suggested by Fourier transform ion cyclotron resonance mass spectrometry, Raman spectroscopy, and GC-MS experiments, the vaporisation of [Hmim][O(2)CCH(3)] essentially involves a proton transfer mechanism with formation of the two volatile neutral precursor molecules (mim and CH(3)COOH). Although being a low ionicity protic ionic liquid, [Hmim][O(2)CCH(3)] was chosen to validate the methodology proposed here, since its vaporisation mechanism has been unequivocally demonstrated by different methods and for different pressure ranges.  相似文献   

10.
Equilibrium tie line data have been determined for the two ternary liquid systems, namely {dodecane + propylbenzene + [mebupy][BF4]} and {dodecane + butylbenzene + [mebupy][BF4]} at temperatures (313, 323, and 333) K and atmospheric pressure. The effects of temperature and solvent to feed ratio upon solubility, selectivity, and distribution coefficient were investigated experimentally. The reliability of the experimental data was tested using the Othmer–Tobias correlation. The experimental results were regressed to estimate the interaction parameters between each of the three pairs of components for the UNIQUAC and the NRTL models as a function of temperature. In addition, the LLE data were also correlated with the UNIQUAC and NRTL models in a satisfactory manner.  相似文献   

11.
Binary liquid + liquid phase equilibria for 8 systems containing N-octylisoquinolinium thiocyanate, [C8iQuin][SCN] and aliphatic hydrocarbon (n-hexane, n-heptane), cyclohexane, aromatic hydrocarbon (benzene, toluene, ethylbenzene, n-propylbenzene) and thiophene have been determined using dynamic method. The experiment was carried out from room temperature to the boiling-point of the solvent at atmospheric pressure. For the tested binary systems the mutual immiscibility with an upper critical solution temperature (UCST) for {IL + aliphatic hydrocarbon, or thiophene} were observed. The immiscibility gap with lower critical solution temperature (LCST) for the {IL + aromatic hydrocarbon} were determined. The parameters of the LLE correlation equation for the tested binary systems have been derived using NRTL equation. The phase equilibria diagrams presented in this paper are compared with literature data for the corresponding ionic liquids with N-alkylisoquinolinium, or N-alkylquinolinium cation and with thiocyanate – based ionic liquids. The influence of the ionic liquid structure on mutual solubility with aliphatic and aromatic hydrocarbons and thiophene is discussed.  相似文献   

12.
将具有"高温混溶、室温分相"功能的离子液体[CH3(OCH2CH2)16N+Et3][CH3SO3–](ILPEG750)与甲苯-正庚烷组成的两相体系用于纳米Rh催化的烯烃氢甲酰化反应中,在优化的反应条件下,1-辛烯转化率和醛收率分别为99%和91%.催化剂经简单分相即可与产物分离,且可连续使用8次,其活性基本保持不变.  相似文献   

13.
The group contribution equation of state (GC-EOS) was applied to predict the phase behavior of binary systems of ionic liquids of the homologous families 1-alkyl-3-methylimidazolium hexafluorophosphate and tetrafluoroborate with CO2. Pure group parameters for the new ionic liquid functional groups [-mim][PF6] and [-mim][BF4] and interaction parameters between these groups and the paraffin (CH3, CH2) and CO2 groups were estimated. The GC-EOS extended with the new parameters was applied to predict high-pressure phase equilibria in binary mixtures of the ionic liquids [emim][PF6], [bmim][PF6], [hmim][PF6], [bmim][BF4], [hmim][BF4], and [omim][BF4] with CO2. The agreement between experimental and predicted bubble point data for the ionic liquids was excellent for pressures up to 20 MPa, and even for pressures up to about 100 MPa, the agreement was good. The results show the capability of the GC-EOS to describe phase equilibria of systems consisting of ionic liquids.  相似文献   

14.
(Solid + liquid) equilibria (SLE) and (liquid + liquid) equilibria (LLE) for the binary systems: {ionic liquid (IL) N-butyl-4-methylpyridinium tosylate (p-toluenesulfonate) [BM4Py][TOS], or N-butyl-3-methylpyridinium tosylate [BM3Py][TOS], or N-hexyl-3-methylpyridinium tosylate [HM3Py][TOS], or N-butyl-4-methylpyridinium bis{(trifluoromethyl)sulfonyl}imide [BM4Py][NTf2], or 1,4-dimethylpyridinium tosylate [M1,4Py][TOS], or 2,4,6-collidine tosylate [M2,4,6Py][TOS], or 1-ethyl-3-methylimidazolium thiocyanate [EMIM][SCN], or 1-butyl-3-methylimidazolium thiocyanate [BMIM][SCN], or 1-hexyl-3-methylimidazolium thiocyanate [HMIM][SCN], or triethylsulphonium bis(trifluoromethylsulfonyl)imide [Et3S][NTf2] + thiophene} have been determined at ambient pressure. A dynamic method was used over a broad range of mole fractions and temperatures from (270 to 390) K. In the case of systems (pyridinium IL, or sulphonium IL + thiophene) the mutual immiscibility with an upper critical solution temperature (UCST) was detected at the very narrow and low mole fraction of the IL. For the binary systems containing (imidazolium thiocyanate IL + thiophene), the mutual immiscibility with the lower critical solution temperature (LCST) was detected at the higher mole fraction range of the IL. The basic thermal properties of the pure ILs, i.e. melting and glass-transition temperatures as well as the enthalpy of fusion have been measured using a differential scanning microcalorimetry technique (DSC). The well-known NRTL equation has been used to correlate experimental SLE/LLE data sets.  相似文献   

15.
The phase diagrams for binary mixtures of an ammonium ionic liquid, didecyldimethylammonium nitrate, [DDA][NO3], with: alcohols (propan-1-ol, butan-1-ol, octan-1-ol, and decan-1-ol): hydrocarbons (toluene, propylbenzene, hexane, and hexadecane) and with water were determined in our laboratory. The phase equilibria were measured by a dynamic method from T = 220 K to either the melting point of the ionic liquid, or to the boiling point of the solvent. A simple liquidus curve in a eutectic system was observed for [DDA][NO3] with: alcohols (propan-1-ol, butan-1-ol, and octan-1-ol); aromatic hydrocarbons (toluene and propylbenzene) and with water. (Solid + liquid) equilibria with immiscibility in the liquid phase were detected with the aliphatic hydrocarbons heptane and hexadecane and with decan-1-ol. (Liquid + liquid) equilibria for the system [DDA][NO3] with hexadecane was observed for the whole mole fraction range of the ionic liquid. The observation of the upper critical solution temperature in binary mixtures of ([DDA][NO3] + decan-1-ol, heptane, or hexadecane) was limited by the boiling temperature of the solvent.Characterisation and purity of the compounds were determined by elemental analysis, water content (Fisher method) and differential scanning microcalorimetry (d.s.c.) analysis. The d.s.c. method of analysis was used to determine melting temperatures and enthalpies of fusion. The thermal stability of the ionic liquid was resolved by the thermogravimetric technique–differential thermal analysis (TG–DTA) technique over a wide temperature range from (200 to 780) K. The thermal decomposition temperature of 50% of the sample was greater than 500 K.The (solid + liquid) phase equilibria, curves were correlated by means of different GEx models utilizing parameters derived from the (solid + liquid) equilibrium. The root-mean-square deviations of the solubility temperatures for all calculated data are dependent upon the particular system and the particular equation used. Comparison of the solubilities of different ammonium salts in alcohols, in hexane, in benzene, and in water are discussed.  相似文献   

16.
The excess molar enthalpies of the systems 2-butanone+water and methanol+hexane which show limited miscibility were measured at 283.15–298.15 K using a flow microcalorimeter. The experimental data were correlated using three local-composition (LC) models (NRTL, modified Wilson and modified EBLCM). These models were also used to predict the liquid–liquid equilibria for both systems with the parameters obtained from the excess enthalpy data.  相似文献   

17.
Novel quaternary ammonium ionic liquid, ethyl(2-hydroxyethyl)dimethylammonium bis(trifluomethylsulfonyl)imide (C2NTf2), has been prepared from N,N-dimethylethanolamine as a substrate. The paper includes a specific basic characterization of the synthesized compound by NMR and the basic thermophysical properties: the melting point, enthalpy of fusion, enthalpy of solid-solid phase transition, glass transition determined by the differential scanning calorimetry (DSC), temperature of decomposition, and water content. The density of the new compound was measured. The solid-liquid or liquid-liquid phase equilibria of binary mixtures containing {C2NTf2+water or an alcohol (propan-1-ol, butan-1-ol, hexan-1-ol, octan-1-ol, decan-1-ol), aromatic hydrocarbons (benzene, toluene), aliphatic hydrocarbons (n-hexane, n-octane), dimethylsulfoxide (DMSO), or tetrahydrofuran (THF)} have been measured by a dynamic method in a wide range of temperatures from 230 to 430 K. These data were correlated by means of the nonrandom two-liquid (NRTL) equation utilizing temperature-dependent parameters derived from the solid-liquid or liquid-liquid equilibrium. From the solubility results, the negative value of the partition coefficient of ionic liquid in binary system octan-1-ol/water (log P) at 298.15 K has been calculated.  相似文献   

18.
This work reports the experimental measurements {(vapor + liquid) equilibrium} for the systems {water(1) + glycerol(2)}, {ethanol(1) + glycerol(2)}, {ethanol(1) + ethyl stearate(2)}, and {ethanol(1) + ethyl palmitate(2)}. Boiling temperatures were measured using an Othmer-type ebulliometer over a pressure range of 14 kPa to 96 kPa. The experimental data were well correlated using the NRTL and UNIQUAC models. The performance of the UNIFAC-Dortmund model in relation to predicting the phase equilibrium of the systems was also studied.  相似文献   

19.
Isobaric (vapour + liquid) equilibrium data have been measured for the (toluene + sulfolane), (ethylbenzene + sulfolane), and (isopropylbenzene + sulfolane) binary systems with a modified Rose-Williams still at 101.33 kPa. The experimental data of binary systems were well correlated by the non-random two-liquid (NRTL) and universal quasi-chemical (UNIQUAC) activity coefficient models for the liquid phase. All the experimental results passed the thermodynamic consistency test by the Herington method. Furthermore, the model UNIFAC (Do) group contribution method was used. Sulfolane is treated as a group (TMS), the new group interaction parameters for CH2–TMS, ACH–TMS and ACCH2–TMS were regressed from the VLE data of (toluene + sulfolane) and (ethylbenzene + sulfolane) binary systems. Then these group interaction parameters were used to estimate phase equilibrium data of the (isopropylbenzene + sulfolane) binary system. The results showed that the estimated data were in good agreement with the experimental values. The maximum and average absolute deviations of the temperature were 4.50 K and 2.39 K, respectively. The maximum and average absolute deviations for the vapour phase compositions of isopropylbenzene were 0.0237 and 0.0137, respectively.  相似文献   

20.
The influence of the alkyl-substituent chain in 1-alkyl-3-methylimidazolium bis{(trifluoromethyl)sulfonyl}amide ionic liquids ([C(n)mim][NTf(2)], where n is the length of a linear alkyl chain) as solvents for the separation of benzene and hexane by liquid extraction was investigated. The liquid-liquid equilibrium (LLE) at 25 degrees C for the ternary systems ([C(n)mim][NTf(2)] + hexane + benzene), with n taking the values 4, 8, 10, and 12, were determined. These data were analyzed and compared to those previously reported for the system ([C(2)mim][NTf(2)] + hexane + benzene). The results show that short alkyl chains on the imidazolium cation of the ionic liquid lead to a better extractive separation of benzene and hexane, and reveal the influence of the relative degree of ordering in the ionic liquids on the extraction parameters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号