首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A hybrid strategy for geometric distortion correction of echo-planar images is demonstrated. This procedure utilizes standard field mapping for signal displacement correction and the so-called reverse gradient acquisition for signal intensity correction. (The term reverse gradient refers to an acquisition of two sets of echo-planar images with phase encoding gradients of opposite polarity.) The hybrid strategy is applied to human brain echo-planar images acquired with and without diffusion-weighting. A comparison of the hybrid distortion corrected images to those corrected with standard field mapping only demonstrates much better performance of the hybrid method. A variant of the hybrid method is also demonstrated which requires the acquisition of only one pair of opposite polarity images within a set of images.  相似文献   

2.
图像显示系统几何畸变的测量及校正   总被引:2,自引:0,他引:2  
为了保证图像显示系统能够产生120°的大视场,在系统中使用了超广角耦合物镜,这样就不可避免地存在几何畸变。提出了一种基于点物成像原理,并采用数码相机和精密单轴转台进行畸变测量的方法,介绍了测量原理和测量过程,根据测量后得到的畸变规律,采用数字图像处理的方法对几何畸变进行了校正。校正后,图像显示系统的畸变小于0.4%,完全能够满足导弹景象匹配系统定位误差及定位概率的检测要求。  相似文献   

3.
There has been vast interest in determining the feasibility of functional magnetic resonance imaging (fMRI) as an accurate method of imaging brain function for patient evaluations. The assessment of fMRI as an accurate tool for activation localization largely depends on the software used to process the time series data. The performance evaluation of different analysis tools is not reliable unless truths in motion and activation are known. Lack of valid truths has been the limiting factor for comparisons of different algorithms. Until now, currently available phantom data do not include comprehensive accounts of head motion. While most fMRI studies assume no interslice motion during the time series acquisition in fMRI data acquired using a multislice and single-shot echo-planar imaging sequence, each slice is subject to a different set of motion parameters. In this study, in addition to known three-dimensional motion parameters applied to each slice, included in the time series computation are geometric distortion from field inhomogeneity and spin saturation effect as a result of out-of-plane head motion. We investigated the effect of these head motion-related artifacts and present a validation of the mapping slice-to-volume (MSV) algorithm for motion correction and activation detection against the known truths. MSV was evaluated, and showed better performance in comparison with other widely used fMRI data processing software, which corrects for head motion with a volume-to-volume realignment method. Furthermore, improvement in signal detection was observed with the implementation of the geometric distortion correction and spin saturation effect compensation features in MSV.  相似文献   

4.
基于畸变率的图像几何校正   总被引:2,自引:0,他引:2       下载免费PDF全文
大视场成像光学系统中的畸变会降低图像质量,必须预以校正。提出一种新的校正方法,即根据畸变率的定义推导出畸变校正公式。根据公式,在镜头畸变率已知的情况下可以很容易地校正畸变。对于畸变率未知的情况,给出了建立畸变模型的方法,通过畸变模型可近似计算畸变率。得出通过控制畸变模型中某一个形状的参数可以控制畸变量大小的结论。提出的方法已经在实际工程中采用。实践证明,这种模型可以满足大多数镜头的畸变校正要求。  相似文献   

5.
提高广角成像系统几何畸变数字校正精度的方法   总被引:14,自引:2,他引:12  
张全法  何金田 《光学技术》2001,27(3):242-246
光学成像系统非线性几何畸变的高精度数字校正仍然是一个未能很好解决的问题。其中 ,衡量畸变程度的参数难以精确测量是最重要的原因之一。在以径向几何畸变为主的非线性几何畸变模型中 ,通过对影响畸变参数测量精度的各种因素的分析 ,提出了提高畸变参数测量精度的方法。详细介绍了通过计算机自动测量畸变参数的算法 ,并给出了实现数字校正的算法。实验表明 ,能够比较精确地测出实现畸变校正所需的各参数。应用到不规则平面物体面积的测量中 ,获得了很好的效果  相似文献   

6.
平面物体在曲面状态下扫描仪图像的校正实验   总被引:6,自引:5,他引:1  
平面物体在曲面状态下经扫描仪扫描后,其图像将发生复杂的畸变。提出了用椭圆柱面加平面模型来描述实际扭曲的情况。基于二元曲面模型的投影畸变和成像畸变数字校正理论,推导了具体的畸变校正公式,并给出了确定成像畸变系数的实用方法。实验结果表明,经校正后投影畸变能够从最大的56%降低到2 5%;成像畸变能够从最大的8 4%降低到0 3%;投影畸变和成像畸变的组合畸变能够从最大的70%降低到3 1%。图像灰度直方图标准偏差的误差可从491%降低到6 5%。  相似文献   

7.
以随机相位屏构造波前畸变相位,运用高通滤波的方法模拟变形镜对光束波前畸变相位的校正作用,模拟分析了畸变波前的相位校正效果,定量分析了校正效果与低频相位畸变和高频相位畸变之间的关系,并进一步讨论了变形镜的校正位置对校正效果的影响。研究结果表明:对于给定单元尺寸的变形镜,随着畸变波前中高频相位畸变所占比例的增大,经校正后的远场光束质量明显降低,校正效果也越来越差。此外,光学变形镜所在位置对校正效果存在明显影响,校正效果随校正位置的变化呈现出起伏变化。  相似文献   

8.
畸变波前相位校正效果分析   总被引:3,自引:2,他引:3  
 以随机相位屏构造波前畸变相位,运用高通滤波的方法模拟变形镜对光束波前畸变相位的校正作用,模拟分析了畸变波前的相位校正效果,定量分析了校正效果与低频相位畸变和高频相位畸变之间的关系,并进一步讨论了变形镜的校正位置对校正效果的影响。研究结果表明:对于给定单元尺寸的变形镜,随着畸变波前中高频相位畸变所占比例的增大,经校正后的远场光束质量明显降低,校正效果也越来越差。此外,光学变形镜所在位置对校正效果存在明显影响,校正效果随校正位置的变化呈现出起伏变化。  相似文献   

9.
Open-configuration magnetic resonance imaging (MRI) systems are becoming increasingly desirable for musculoskeletal imaging and image-guided radiotherapy because of their non-claustrophobic configuration. However, geometric image distortion in large fields-of-view (FOV) due to field inhomogeneity and gradient nonlinearity hinders the practical applications of open-type MRI. We demonstrated the use of geometric distortion correction for increasing FOV in open MRI. Geometric distortion was modeled and corrected as a global polynomial function. The appropriate polynomial order was identified as the minimum difference between the coordinates of control points in the distorted MR image space and those predicted by polynomial modeling. The sixth order polynomial function was found to give the optimal value for geometric distortion correction. The area of maximum distortion was < 1 pixel with an FOV of 285 mm. The correction performance error was increased at most 1.2% and 2.9% for FOVs of 340 mm and ~ 400 mm compared with the FOV of 285 mm. In particular, unresolved distortion was generated by local deformation near the gradient coil center.  相似文献   

10.
Several methods have been proposed for motion correction of high angular resolution diffusion imaging (HARDI) data. There have been few comparisons of these methods, partly due to a lack of quantitative metrics of performance. We compare two motion correction strategies using two figures of merit: displacement introduced by the motion correction and the 95% confidence interval of the cone of uncertainty of voxels with prolate tensors. What follows is a general approach for assessing motion correction of HARDI data that may have broad application for quality assurance and optimization of postprocessing protocols. Our analysis demonstrates two important issues related to motion correction of HARDI data: (1) although neither method we tested was dramatically superior in performance, both were dramatically better than performing no motion correction, and (2) iteration of motion correction can improve the final results. Based on the results demonstrated here, iterative motion correction is strongly recommended for HARDI acquisitions.  相似文献   

11.
This study quantitatively assesses the effectiveness of retrospective beat-to-beat respiratory motion correction (B2B-RMC) at near 100% efficiency using high-resolution coronary artery imaging. Three-dimensional (3D) spiral images were obtained in a coronary respiratory motion phantom with B2B-RMC and navigator gating. In vivo, targeted 3D coronary imaging was performed in 10 healthy subjects using B2B-RMC spiral and navigator gated balanced steady-state free-precession (nav-bSSFP) techniques. Vessel diameter and sharpness in proximal and mid arteries were used as a measure of respiratory motion compensation effectiveness and compared between techniques. Phantom acquisitions with B2B-RMC were sharper than those acquired with navigator gating (B2B-RMC vs. navigator gating: 1.01±0.02 mm−1 vs. 0.86±0.08 mm−1, P<.05). In vivo B2B-RMC respiratory efficiency was significantly and substantially higher (99.7%±0.5%) than nav-bSSFP (44.0%±8.9%, P<.0001). Proximal and mid vessel sharpnesses were similar (B2B-RMC vs. nav-bSSFP, proximal: 1.00±0.14 mm−1 vs. 1.08±0.11 mm−1, mid: 1.01±0.11 mm−1 vs. 1.05±0.12 mm−1; both P=not significant [ns]). Mid vessel diameters were not significantly different (2.85±0.39 mm vs. 2.80±0.35 mm, P=ns), but proximal B2B-RMC diameters were slightly higher (2.85±0.38 mm vs. 2.70±0.34 mm, P<.05), possibly due to contrast differences. The respiratory efficiency of B2B-RMC is less variable and significantly higher than navigator gating. Phantom and in vivo vessel sharpness and diameter values suggest that respiratory motion compensation is equally effective.  相似文献   

12.
Lack of spatial accuracy is a recognized problem in magnetic resonance imaging (MRI) which severely detracts from its value as a stand-alone modality for applications that put high demands on geometric fidelity, such as radiotherapy treatment planning and stereotactic neurosurgery. In this paper, we illustrate the potential and discuss the limitations of spectroscopic imaging as a tool for generating purely phase-encoded MR images and parameter maps that preserve the geometry of an object and allow localization of object features in world coordinates.  相似文献   

13.
Most of the existing color image watermarking schemes was designed to mark grayscale images or use the color components, which ignore the significant correlation between different color channels. Recently, several approaches were developed to process the color channels intrinsically, but they always cannot counterattack geometric distortions. It is a challenging work to design a robust color image watermarking scheme against geometrical distortions. In this paper, we propose a geometric correction based robust color image watermarking approach using quaternion Exponent moments (QEMs). The novelty of our approach is that (1) the QEMs are derived to deal with the color images in a holistic manner, and (2) the QEMs are exploited for estimating the geometric distortions parameters in order to permit watermark extraction. Experimental results confirm the validity of our approach and its higher robustness against geometrical distortions compared to alternative watermarking methods in the literature.  相似文献   

14.
一种光学成像垂轴几何畸变校正方法   总被引:7,自引:2,他引:7  
光学成像系统非线性几何畸变的校正仍是一个未能很好解决的课题,一些方法还不能很好地实用。本文对成像系统主要因镜头的失常导致的非线性几何畸变,分析了成像过程。提出一种以径向几何畸变为主的非线性几何畸变模型。依据此模型,提出一种通用的校正方法,应用计算机处理,可对实际的非线性几何畸变图像进行校正。文中用所提出的方法对实际成像的畸变进行了校正,给出了校正实验结果,校正效果良好,有一定的实验价值。  相似文献   

15.
Motion correction is an important step in the functional magnetic resonance imaging (fMRI) analysis pipeline. While many studies simply exclude subjects who are estimated to have moved beyond an arbitrary threshold, there exists no objective method for determining an appropriate threshold. Furthermore, any criterion based only upon motion estimation ignores the potential for proper realignment. The method proposed here uses unsupervised learning (specifically k-means clustering) on features derived from the mean square derivative (MSD) of the signal before and after realignment to identify problem data. These classifications are refined through analysis of correlation between subject activation maps and the mean activation map, as well as the relationship between tasking and motion as measured through regression of the canonical hemodynamic response functions to fit both estimated motion parameters and MSD. The MSD is further used to identify specific scans containing residual motion, data which is suppressed by adding nuisance regressors to the general linear model; this statistical suppression is performed for identified problem subjects, but has potential for use over all subjects. For problem subjects, our results show increased hemodynamic activity more consistent with group results; that is, the addition of nuisance regressors resulted in a doubling of the correlation between the activation map for the problem subjects and the activation map for all subjects. The proposed method should be useful in helping fMRI researchers make more efficient use of their data by reducing the need to exclude entire subjects from studies and thus collect new data to replace excluded subjects.  相似文献   

16.
书籍扫描图像畸变参数自动计算精度的提高   总被引:2,自引:0,他引:2  
建立了一个数据文件,用于存储一些在不同弯曲状态下书籍扫描图像页边灰度的曲线数据以及对应的多项式系数。利用多项式来描述在某种弯曲状态下像素灰度与页面上的对应点到扫描仪工作平面之间的距离关系。任意弯曲状态下的书籍扫描图像可以在数据文件中搜索到与其最接近的弯曲状态,并利用对应的多项式系数自动求得最佳畸变参数,用于图像的畸变校正实验,获得了较好的校正效果,最大误差由未校正时的63%下降到了4.4%。这使得在无需人工测量或调整畸变参数的条件下可自动校正书籍扫描图像。  相似文献   

17.
A block-wise motion detection strategy based on compressive imaging, also referred to as feature-specific imaging (FSI), is described in this work. A mixture of Gaussian distributions is used to model the background in a scene. Motion is detected in individual object blocks using feature measurements. Gabor, Hadamard binary and random binary features are studied. Performance of motion detection methods using pixel-wise measurements is analyzed and serves as a baseline for comparison with motion detection techniques based on compressive imaging. ROC (Receiver Operation Characteristic) curves and AUC (Area Under Curve) metrics are used to quantify the algorithm performance. Because a FSI system yields a larger measurement SNR(Signal-to-Noise Ratio) than a traditional system, motion detection methods based on the FSI system have better performance. We show that motion detection algorithms using Hadamard and random binary features in a FSI system yields AUC values of 0.978 and 0.969 respectively. The pixel-based methods are only able to achieve a lower AUC value of 0.627.  相似文献   

18.
Radial MRI is typically used for scans that are sensitive to unavoidable motion. While the translational motion artifact can be easily removed from the radial trajectory data by phase correction, correction of rotational motion still remains a challenge in radial MRI. We present a novel method to refocus the image corrupted by view-to-view motion in the view-interleaved radial MRI data. In this method, the error in rotational view angles was modeled as a polynomial function of the view order and the model parameters were estimated by minimizing the self-navigator image metrics such as image entropy, gradient entropy, normalized gradient squared and mean square difference. Translational motion correction was conducted by aligning the projection profiles. Simulation studies were conducted to demonstrate the robustness of both translational and rotational motion correction methods in different noise levels. The proposed method was successfully applied to correct for motion of healthy subjects. Substantial motion correction with relative error of less than 5% was achieved by using either first- or second-order model with the image metrics. This study demonstrates the potential of the method for motion-sensitive applications.  相似文献   

19.
Chemical shift imaging (CSI) relies on a strong and homogeneous main field. Field homogeneity ensures adequate coherence between the precessions of individual spins within each voxel. Variation of field strength between different voxels causes geometric distortion and intensity variation in chemical shift images, resulting in errors when analyzing the spatial distribution of specific chemical compounds. A post-processing method, based on detection of the spectral peak of water and baseline subtraction with Lorentzian functions, was developed in this study to automatically correct spectra offsets caused by field inhomogeneity, thus enhancing the contrast of the chemical shift images. Because this method does not require prior field plot information, it offers advantages over existing correction methods. Furthermore, the method significantly reduces geometric distortion and enhances signals of chemical compounds even when the water suppression protocol was applied during the CSI data acquisition. The experimental results of the water and glucose phantoms showed a considerable reduction of artifacts in the spectroscopic images when this post-processing method was employed. The significance of this method was also demonstrated by an analysis of the spatial distributions of sugar and water contents in ripe and unripe bananas.  相似文献   

20.
We present a method for the quantification and correction of geometrical/intensity distortions of magnetic resonance images predominantly caused by bulk magnetic susceptibility shifts due to susceptibility heterogeneities of measured biologic tissues and shape of the object under investigation. The method includes precise and fast measurements of the static magnetic-field distribution inside the measured object and automated data processing. Magnetic-field deviations in the range −2.4; 2.6 ppm were found in the human brain at B0 = 1.5 T. For routinely used imaging parameters, with a read gradient strength of about 1 mT/m, the magnetic-field perturbations in the human brain can cause geometrical distortions up to ±4 mm and intensity changes up to ±50%. MR images corrected by the described method are suitable for planning high precision applications in neurosurgery.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号