首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Solutions for problems of profile design near a rigid wall or free surface are found as particular cases of the more general inverse problem of flow over an airfoil near an interface. The solution is based on a modification of the iteration method developed in [3, 4] for the direct problem of flow over a profile near an interface. In each step the apparatus of quasisolutions is employed. The calculations carried out demonstrate the efficiency of the method and reveal the effect of an interface, a rigid wall and a free surface on the geometric and aerodynamic characteristics of the profile.Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No.6, pp. 15–21, November–December, 1992.  相似文献   

2.
3.
The motion of a spherical cavity in a fluid is investigated. The radius of the sphere varies under the action of a constant pressure at infinity. The problems of the collapse of a cavity moving in an unbounded fluid and of the collapse of a cavity near a plane are solved in the exact formulation. The occurrence of an initial translational velocity or the presence of a solid surface, by contrast with the collapse of a sphere at rest in an unbounded fluid [1], yields a limiting radius at which the process of collapse ceases. A sphere initially at rest near a plane always comes into contact with the plane as a result of collapse. The radius and velocities at which the sphere arrives the plane are calculated for various initial distances from the latter. The possible mechanism of the action of a cavitation bubble on a solid surface is discussed.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 5, pp. 94–103, September–October, 1971.  相似文献   

4.
The mechanisms of sound generation and the kind of interaction of vortices with airfoils in an airflow are investigated. Experiments have been performed in stationary flow with vortices of a Kármán vortex street and in a shock tube flow with a starting vortex of a lifting airfoil. Depending on the dimensions of vortices and airfoils, their distance, and the flow Mach numbers, different kinds and amplitudes of upstream propagating steep sound waves occur.  相似文献   

5.
The objective of the current study is to examine the course of events leading to stall just before its occurrence. The stall mechanisms are very sensitive to the transition that the boundary layer undergoes near the leading edge of the profile by a so-called laminar separation bubble (LSB). In order to provide helpful insights into this complex flow, a zonal Reynolds-averaged Navier–Stokes (RANS)/large-eddy simulation (LES) simulation of the flow around an airfoil near stall has been achieved and its results are presented and analyzed in this paper. LSB has already been numerically studied by direct numerical simulation (DNS) or LES, but for a flat plate with an adverse pressure gradient only. We intend, in this paper, to achieve a detailed analysis of the transition process by a LSB in more realistic conditions. The comparison with a linear instability analysis has shown that the numerical instability mechanism in the LSB provides the expected frequency of the perturbations. Furthermore, the right order of magnitude for the turbulence intensities at the reattachment point is found.   相似文献   

6.
Data are presented on the drag and lift coefficients of prismatic bodies with an aspect ratio of =0.15–1.0 near a screen. The bodies were placed in the low velocity stream so that the planes of the square bases of the bodies were parallel to the screen plane. Body orientation in the scream corresponded to the minimum projected frontal area. The experiments were conducted in the Reynolds number range from 2·105 to 9·105 (the characteristic linear dimension is the side of the base). It is shown that approach of the prismatic models to the screen, simulating the ground, leads to some change of the drag coefficient and the appearance of a significant lift force tending to separate the model from the screen.  相似文献   

7.
We consider the arbitrary motion of a circular cylinder in an ideal fluid near a vertical wall. This problem is usually solved in the approximate formulation with a degree of error which is difficult to assess, increasing with approach of the cylinder to the wall [1, 2], The exact solution has previously been carried out only for the case of purely circulatory flow about the cylinder [3].  相似文献   

8.
9.
10.
The unsteady wake of a flat disk (diameter D) located at a distance of H from a flat plate has been experimentally investigated at a Reynolds number Re D  = 1.3 × 105. Tests have been performed for a range of gap ratio (H/D), spanning from 0.3 to 1.75. The leading edge of the flat plate is either streamlined (elliptical) or blunt (square). These configurations have been studied with PIV, high speed PIV and multi-arrayed off-set fluctuating pressure measurements. The results show a progressive increase of the complexity of the flow and of the interaction as the gap ratio decreases. For large values of H/D (1.75), the interaction is weak and the power spectral densities (PSD) exhibit a strong peak associated with the vortex shedding events (St = 0.131) – St = fD/U is the Strouhal number. For lower values of H/D (0.75), the magnitude of the wall fluctuating pressure increases significantly. A large band contribution is associated with the unsteady wake structure and turbulence. A slight increase of the shedding frequency (St = 0.145) is observed. A critical value of the gap ratio (about 0.35) has been determined. Below this critical value, a three-dimensional separated region is observed and the natural vortex shedding process is very strongly altered. These changes induce a great modification of the fluctuating pressure at the wall. Each interaction reacts in a different way to perturbed upstream conditions. In particular, the disk is an overwhelming perturbation for the lowest H/D value studied here and the relative influence of the upstream turbulence on the wall fluctuating pressure below the near wake region is moderate.  相似文献   

11.
A stochastic estimation technique has been applied to simultaneously acquired data of velocity and surface pressure as a tool to identify the sources of wall-pressure fluctuations. The measurements have been done on a NACA0012 airfoil at a Reynolds number of Re c  = 2 × 105, based on the chord of the airfoil, where a separated laminar boundary layer was present. By performing simultaneous measurements of the surface pressure fluctuations and of the velocity field in the boundary layer and wake of the airfoil, the wall-pressure sources near the trailing edge (TE) have been studied. The mechanisms and flow structures associated with the generation of the surface pressure have been investigated. The “quasi-instantaneous” velocity field resulting from the application of the technique has led to a picture of the evolution in time of the convecting surface pressure generating flow structures and revealed information about the sources of the wall-pressure fluctuations, their nature and variability. These sources are closely related to those of the radiated noise from the TE of an airfoil and to the vibration issues encountered in ship hulls for example. The NACA0012 airfoil had a 30 cm chord and aspect ratio of 1.  相似文献   

12.
The interaction between the wake of a rotor blade and a downstream cylinder holds the key to the understanding and control of electronic cooling fan noise. In this paper, the aerodynamic characteristics of a circular cylinder are experimentally studied in the presence of an upstream NACA 4412 airfoil for the cylinder-diameter-based Reynolds numbers of Red=2,100–20,000, and the airfoil chord-length-based Reynolds numbers of Rec=14,700–140,000. Lift and drag fluctuations on the cylinder, and the longitudinal velocity fluctuations of the flow behind the cylinder were measured simultaneously using a load cell and two hot wires, respectively. Data analysis shows that unsteady forces on the cylinder increase significantly in the presence of the airfoil wake. The dependence of the forces on two parameters is investigated, that is, the lateral distance (T) between the airfoil and the cylinder, and the Reynolds number. The forces decline quickly as T increases. For Rec<60,000, the vortices shed from the upstream airfoil make a major contribution to the unsteady forces on the cylinder compared to the vortex shedding from the cylinder itself. For Rec>60,000, no vortices are generated from the airfoil, and the fluctuating forces on the cylinder are caused by its own vortex shedding.  相似文献   

13.
The dynamics of a cylindrical cavity in a liquid with no allowance for vertical displacement are considered in [1–3]. The present study investigates the pulsation motion of a cylindrical cavity near a free boundary of a liquid, allowing for displacement of the axis of the cavity in the vertical direction.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 6, pp. 173–176, November–December, 1988.  相似文献   

14.
The boundary layer motion of a weak suspension is investigated with allowance for the effect on the particles not only of the Stokes force but also of the additional transverse force resulting from the transverse nonuniformity of the flow over the individual particle. As distinct from studies [1–3], in which the limiting values of the transverse force (Saffman force) were used [4], the velocity and density of the dispersed phase have been determined with allowance for the dependence of the Saffman force on the ratio of the Reynolds numbers calculated from the velocity of the flow over the individual particle and the transverse velocity gradient of the undisturbed flow, respectively [5, 6].Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No. 1, pp. 66–73, January–February, 1992.In conclusion the authors wishes to thank M. N. Kogan, N. K. Makashev, and A. Yu. Boris for useful discussions of the results.  相似文献   

15.
Summary An investigation is presented of the modifications that must be made to two-dimensional calculations of the flow past an airfoil when the flow takes place in a symmetric channel with slightly non-parallel walls.  相似文献   

16.
A method of designing mechanized profiles is proposed. This method preserves the advantages of inverse boundary-value problems for simply connected domains and makes it possible to use quasi-solutions for satisfying the conditions of solvability. The problems of designing a profile with an infinitely thin flap of finite length and an airfoil with a flap of finite thickness are considered.Kazan'. Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No. 1, pp. 173–180, January–February, 1995.  相似文献   

17.
Incompressible viscous flow past an airfoil at low Reynolds numbers is investigated on the basis of a numerical solution of the complete Navier-Stokes equations. Steady flow regimes, with and without separation, are obtained and, moreover, periodic regimes with the formation of a vortex trail in the wake. The frequency of vortex formation is determined by the linear dimension of the projection of the airfoil on the normal to the freestream velocity. The relation between the Strouhal and Reynolds numbers, determined from this linear dimension, depends only slightly on the angle of attack and shape of the airfoil and is similar to the experimental dependence for circular cylinders.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 4, pp. 29–36, July–August, 1986.In conclusion the authors wish to express their warm thanks to G. I. Petrov for his interest in their work and valuable discussion of their results, and to V. P. Shkadova for discussing the formulation of the problem and the method of solution and for her constant readiness to advise on the organization of the calculations.  相似文献   

18.
The effect of radiation forces on a spherical particle near a flat liquid boundary is studied. The force is established to depend on the density ratio, the distance to the boundary, and the acoustic field parameters. The motion of a spherical particle under the action of radiation forces is described Translated from Prikladnaya Mekhanika, Vol. 44, No. 11, pp. 30–41, November 2008.  相似文献   

19.
The motion of a vortex beneath the surface of a heavy fluid has been discussed in both linear [1, 2] and nonlinear [3–5] formulation. The density of the upper medium is neglected, which makes it possible to replace the continuity of pressure during transition through the boundary between the media by constancy of the pressure at the boundary of the heavy fluid. In this paper, the problem is solved in a general nonlinear formulation, including the mutual effects of media motion, and the vortex can be in either the upper or lower medium. Steady-state motion of a vortex of given intensity near the boundary between two heavy fluids is discussed in terms of a model of an ideal and incompressible medium. Approximate expressions are obtained for the boundary.  相似文献   

20.
The present study deals with an investigation of the flow aerodynamic characteristics and the propulsive velocity of a system equipped with a nature inspired propulsion system. In particular, the study is aimed at studying the effect of the flapping frequency on the flow behavior. We consider a NACA0014 airfoil undergoing a vertical sinusoidal flapping motion. In contrast to nearly all previous studies in the literature, the present work does not impose any velocity on the inlet flow. During each iteration the outer flow velocity is computed after having determined the forces exerted on the airfoil. Forward motion may only be produced by flapping motion of the airfoil. This is more consistent with the physical phenomenon. The non-stationary viscous flow around the flapping airfoil is simulated using Ansys-Fluent 12.0.7. The airfoil movement is achieved using the deformable mesh technique and an in-house developed User Define Function (UDF). Our results show the influence of flapping frequency and amplitude on both the airfoil velocity and the propulsive efficiency. The resulting motion is contrasts to the applied forces. In the present study, the frequency ranges from 0.1 to 20 Hz while the airfoil amplitude values considered are: 10%, 17.5%, 25% and 40%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号