首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 13 毫秒
1.
Encapsulation of small polar guests in molecular apple peels   总被引:1,自引:0,他引:1  
Three aromatic oligoamides have been prepared that have alternating 1,6-diaminopyridine and 1,6-pyridinedicarboxylic acid units at the center of the sequence and two 8-amino-2-quinolinecarboxylic acid units at each extremity. The three oligomers differ in the number--3, 5, or 7-of pyridine units in the sequence. They were designed to adopt helically folded conformations in solution and in the solid state. The sequence of monomers was chosen so that the diameter of the helix is larger in the center than at each extremity, and hence they resemble helically wrapped apple peels. According to modeling studies, the pyridine units were expected to define a polar hollow within the helix that is large enough to accommodate small polar guests, whereas the quinoline units at each end of the oligomeric sequences were expected to completely cap the hollow and transform the helix cavities into a closed shell that may act as a capsule. Crystallographic studies demonstrate that the oligomers do fold into helices that define a cavity isolated from the surrounding medium in the solid state. Depending on the number of pyridine rings, one or two water molecules are bound within the capsules. The crystal structure of a capsule fragment shows that MeOH can also be hosted by the largest oligomer. Solution NMR studies confirm that binding of water also occurs in solution with the same stoichiometry as observed in the solid state. The capsules have distinct signals depending on whether they are empty, half-full, or full, and these species are in slow exchange on the NMR timescale at low temperature. Indeed, the binding and release of water molecules requires a significant conformational distortion of the helix that slows down these processes. The addition of small polar molecules such as methanol, hydrazine, hydrogen peroxide, or formic acid to the largest capsule leads to the observation of new sets of NMR signals of the capsules that were assigned to complexes with these guests. However, water appears to be the preferred guest.  相似文献   

2.
3.
The solubilities of beta-cyclodextrin (beta-CD), ionic liquid (IL) 1-butyl-3-methylimidazolium hexafluorophosphate (bmimPF6), and their mixture in water were determined, and the conductivity of these aqueous solutions was measured. It was demonstrated that beta-CD and bmimPF6 could enhance the solubility of each other, and the solubility curves of each were linear with gradients of about 1. The conductivity decreased remarkably with increasing beta-CD concentration, and a discernible break in the conductivity curve could be observed when beta-CD and bmimPF6 were equimolar in the solution. The solubility and conductivity results indicated that inclusion complexes (ICs) of 1:1 stoichiometry were formed. The inclusion compounds were further characterized by using powder X-ray diffraction (XRD) analysis, 13C CP/MAS (cross-polarization magic-angle spinning) NMR and 1H NMR spectroscopy, and thermogravimetric analysis (TGA). The results showed that the ICs were a fine crystalline powder. The host-guest system exhibited a channel-type structure and each glucose unit of beta-CD was in a similar environment. The decomposition temperature of the ICs was lower than that of bmimPF6 and beta-CD individually.  相似文献   

4.
The minimum internal diameters of alpha-, beta-, and gamma-cyclodextrin were calculated by a space filling algorithm, MolShape, from the electron density maps created by semiempirical AM1 and PM3 calculations using Gaussian03. In addition, the minimum diameters of a series of dicationic bolaamphiphiles were calculated by MolShape as well. The calculated diameters of these hosts and guests allowed prognosis about the stabilities of the corresponding inclusion compounds. The experimental binding data, obtained by isothermal titration calorimetry (ITC), revealed indeed a very pronounced thickness recognition and correlate well with the calculated diameters.  相似文献   

5.
6.
7.
8.
N-Methylated bismacrocyclic Cu and Ni complexes were synthesised and structurally characterised in the solid state. Their properties in solution were analysed by using NMR and ESR spectroscopies and electrochemical methods. Face-to-face biscyclidenes linked through polymethylene chains form rectangular boxlike cations. These moieties can host some small guest molecules (water, pi-electron donating compounds) and are stabilised by a shell of neighbouring counterions. For the bismacrocyclic dinuclear complexes containing two nickel or two copper ions, the intramolecular interactions between the metallic centres are strengthened through methylation of the macrocyclic components, as compared with the nonmethylated species. We report the electron coupling created by two unpaired electrons coming from two copper centres observed by ESR spectroscopy. Methylation weakens the electron-acceptor properties of the complexes, which leads to less effective binding of the pi-electron-donating guests. It also increases the stability of the lower oxidation states. In the case of the copper complexes, both Cu(II)/Cu(I) and Cu(II)/Cu(III) reversible one-electron transfers are seen in the voltammograms. These changes in properties are interpreted as the consequences of steric repulsion between the methyl substituents and the macrocyclic ring.  相似文献   

9.
10.
11.
12.
13.
14.
The dynamics in the host-guest complexes of the molecular tweezers 1 a,b and clips 2 a,b with 1,2,4,5-tetracyanobenzene (TCNB, 3) and tropylium tetrafluoroborate (4) as guest molecules were analyzed by temperature-dependent 1H NMR spectroscopy. The TCNB complexes of tweezers 1 a,b were found to be particularly stable (dissociation barrier: DeltaG(++)=16.8 and 15.7 kcal mol(-1), respectively), more stable than the TCNB complexes of clips 2 a,b and the tropylium complex of tweezer 1 b (dissociation barrier: DeltaG(++)=12.4, 11.2, and 12.3 kcal mol(-1), respectively). A detailed analysis of the kinetic and thermodynamic data (especially the negative entropies of activation found for complex dissociation) suggests that in the transition state of dissociation the guest molecule is still clipped between the aromatic tips of the host molecule. The 1H NMR analysis of the TCNB complexes 3@1 b and 3@2 a at low temperatures (T<-80 degrees C) showed that 3 undergoes fast rotation inside the cavity of tweezer 1 b or clip 2 a (rotational barrier: DeltaG( not equal)=11.7 and 8.3 kcal mol(-1), respectively). This rotation of a guest molecule inside the host cavity can be considered to be the dynamic equilibration of noncovalent conformers. In the case of clip complex 3@2 a the association and rotational barriers are smaller by DeltaDeltaG(++)=3-4 kcal mol(-1) than those in tweezer complexes 3@1 a,b. This can be explained by the more open topology of the trimethylene-bridged clips compared to the tetramethylene-bridged tweezers. Finally, the bromo substituents in the newly prepared clip 2 b have a substantial effect on the kinetics and thermodynamics of complex formation. Clip 2 b forms weaker complexes with (TCNB, 3) and tetracyanoquinodimethane (TCNQ, 12) and a more stable complex with 2,4,7-trinitrofluoren-9-ylidene (TNF, 13) than the parent clip 2 a. These results can be explained by a less negative electrostatic potential surface (EPS) inside the cavity and a larger van der Waals contact surface of 2 b compared to 2 a. In the case of the highly electron-deficient guest molecules TCNB and TCNQ the attractive electrostatic interaction is predominant and hence responsible for the thermodynamic complex stability, whereas in the case of TNF with its extended pi system, dispersion forces are more important for host-guest binding.  相似文献   

15.
A new efficient system for transporting saccharides through a liquid membrane has been constructed. The transport rates of saccharides were accelerated greatly by the cyclodextrin dimer 2; by contrast, the corresponding cyclodextrin monomer 1 was not effective at mediating saccharide transport. The transport rate of D-ribose through a chloroform liquid membrane was 17 times faster when the cyclodextrin dimer 2 was used as the transporter than when the cyclodextrin monomer 1 was used. Similarly the transport rate of methyl D-galactopyranoside was 16 times faster by 2 than by 1.  相似文献   

16.
The synthesis and structural characterization of novel, "molecular basket"-type bridged cavitands is reported. The resorcin[4]arene-based container molecules feature well-defined cavities that bind a wide variety of cycloalkanes and alicyclic heterocycles. Association constants (K(a)) of the 1:1 inclusion complexes were determined by both (1)H NMR and isothermal titration calorimetry (ITC). The obtained K(a) values in mesitylene ranged from 1.7×10(2) M(-1) for cycloheptane up to 1.7×10(7) M(-1) for morpholine. Host-guest complexation by the molecular baskets is generally driven by dispersion interactions, C-H···π interactions of the guests with the aromatic walls of the cavity, and optimal cavity filling. Correlations between NMR-based structural data and binding affinities support that the complexed heterocyclic guests undergo additional polar C-O···C=O, N-H···π, and S···π interactions. The first crystal structure of a cavitand-based molecular basket is reported, providing precise information on the geometry and volume of the inner cavity in the solid state. Molecular dynamic (MD) simulations provided information on the size and conformational preorganization of the cavity in the presence of encapsulated guests. The strongest binding of heterocyclic guests, engaging in polar interactions with the host, was observed at a cavity filling volume of 63 ± 9%.  相似文献   

17.
To give pH sensitivity to a thermoreversible supramolecular-structured hydrogel system, poly(epsilon-lysine) (PL), as a cationic polymer, was grafted to dextran and used for inclusion complexation with alpha-cyclodextrins (alpha-CDs). The synthesized graft copolymer was characterized by 1H NMR spectroscopy, and the hydrogel formation was confirmed by X-ray diffraction and solid-state 13C NMR analysis. The hydrogelation was induced from a phase-separated structure of hydrated dextrans and hydrophobically aggregated inclusion complexes in buffer solution at pH 10.0. The prepared hydrogels showed thermoreversible gel-sol transitions as well as pH-sensitive phase transitions, which were recorded by the changes in UV/Vis transmittance. A rapid phase transition from gel to sol was observed upon decreasing the pH value to 4.0, which resulted from the dissociation process between the protonated guest polymer and alpha-CDs. The stimuli-responsive physical properties of the hydrogels were improved by modulating the degree of substitution of the grafted PL and the combination with alpha-CDs.  相似文献   

18.
19.
The synthesis of a new family of molecular receptors, namely the calix[6]cryptamides, was achieved through an original [1+1] macrocyclization step that consists of a peptide-coupling reaction between tripodal triscarboxylic acids and a calix[6]trisamine subunit. Several C3- or C3v-symmetrical calix[6]arene-based compounds capped by a trisamido cryptand unit on the narrow rim have been obtained, with the more flexible partners leading to the best yields. These calix[6]cryptamides exhibit two favorably positioned binding sites for the complexation of organic-associated ion pairs in close proximity: a well-defined calix[6]arene cavity suitable for the inclusion of ammonium ions and a cryptamide unit for the coordination of anions. We demonstrate one example, chiral calix[6]cryptamide 12, that constitutes a heteroditopic receptor capable of cooperatively binding both a primary ammonium ion and its chloride counterion, thanks to a combination of polarization and induced-fit effects. In addition, the hydrophobic calixarene cavity of 12 can strongly bind neutral guests through hydrogen bonding and is capable of discriminating between different enantiomers. All these versatile host-guest properties differ greatly from those observed in the parent calix[6]azacryptands.  相似文献   

20.
The template effect in the formation of a trimer carceplex using 1-3 molecules as templates is explored. Thirteen different templates were studied and template ratios were measured for templates of like and unlike molecularity. Five transition-state models were studied for their binding abilities to see if these mirror the template ratios. The chemical shifts of the guests and the thermodynamic and kinetic values for templation suggest that binding is key, often tight, and that the guest determining step is formation of the last covalent bond. The molecular dynamics of guests as well as the conformational dynamics of both hosts and guests further addresses nature of the recognition between host and guest. Finally, we were surprised to discover that water can bind reversibly to the trimer carceplexes, which will have ramifications to any inner phase reactions conducted inside the cage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号