首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Consistent vapour–liquid equilibrium data at 101.3 kPa have been determined for the ternary system dipropyl ether + 1-propyl alcohol + 2-ethoxyethanol and two constituent binary systems: dipropyl ether + 2-ethoxyethanol and 1-propyl alcohol + 2-ethoxyethanol. The dipropyl ether + 2-ethoxyethanol system shows positive deviations from ideal behaviour and 1-propyl alcohol + 2-ethoxyethanol system exhibits no deviation from ideal behaviour. The activity coefficients and the boiling points were correlated with their compositions by the Wilson, NRTL and UNIQUAC equations. It is shown that the models allow a very good prediction of the phase equilibria of the ternary system using the pertinent parameters of the binary systems. The parameters obtained from binary data were utilized to predict the phase behaviour of the ternary system. The results showed a good agreement with the experimental values. Moreover, the entrainer capabilities of 2-ethoxyethanol were compared with 1-pentanol, butyl propionate and N,N-dimethylformamide, concluding that N,N-dimethylformamide is the best entrainer.  相似文献   

2.
Isothermal vapor–liquid equilibrium data determined by the static method at 303.15 K are reported for the binary systems propyl vinyl ether + 1-propanol, 1-propanol + 2,2,4-trimethylpentane and propyl vinyl ether + 2,2,4-trimethylpentane and also for the ternary system propyl vinyl ether + 1-propanol + 2,2,4-trimethyl-pentane. Additionally, new excess volume data are reported for the same systems at 298.15 K. The experimental binary and ternary vapor–liquid equilibrium data were correlated with different GE models and excess molar volume data were correlated with the Redlich–Kister equation for the binary systems and the Cibulka equation for the ternary system, respectively.  相似文献   

3.
Liquid–liquid equilibrium (LLE) data for the quaternary systems of [water + acetic acid + mixed solvent (dipropyl ether + diisopropyl ether)] were measured at 298.2 K and atmospheric pressure, using various compositions of mixed solvent. Binodal curves and tie-lines for the quaternary systems have been determined in order to investigate the effect of solvent mixture, dipropyl ether (DPE) and diisopropyl ether (IPE), on extracting acetic acid from aqueous solution. A comparison of the extracting capabilities of the mixed solvents was made with respect to distribution coefficients, separation factors, and solvent free selectivity bases. Reliability of the data was confirmed by using the Othmer–Tobias and Hand plots. The tie-lines were also correlated using the UNIFAC model. The average root-mean-square deviations between the observed and calculated mass fractions for the studied systems were in the range of 10–14%.  相似文献   

4.
Densities, refractive indices and dynamic viscosities of binary and ternary mixtures composed of isopropyl acetate, isopropanol, 1-octyl-3-methyl-imidazolium bis(trifluoromethylsulfonyl)imide ([C8mim][NTf2]) have been determined at 298.15 K and atmospheric pressure. The excess molar volumes and dynamic viscosity changes of mixing have been calculated and correlated using the Redlich–Kister polynomial equation. Isobaric vapour–liquid equilibrium (VLE) data have been determined experimentally for these binary and ternary systems at 101.32 kPa. The equilibrium data have been adequately correlated by means of Wilson, NRTL, and UNIQUAC equations for the liquid phase activity coefficient.  相似文献   

5.
This work paper presents vapour–liquid equilibrium (VLE) data for binary (CO2 + nicotine) and ternary (CO2 + nicotine + solanesol) mixtures, at 313.2 K and 6, 8 and 15 MPa. The (CO2 + nicotine) system exhibits three phases (L1L2V) in equilibrium at 8.37 MPa. It is estimated that this system most likely follows the type-III phase behaviour. In the ternary system, the presence of solanesol in the vapour phase was detected only at the pressure of 15 MPa. At this pressure, partition coefficients and separation factors for solanesol/nicotine were calculated for different initial nicotine/solanesol compositions and a strong influence of composition was found. The results were modelled using the Peng–Robinson equation of state (PR EOS) coupled with the Mathias–Klotz–Prausnitz (MKP) mixing rule (PR–MKP model). Good correlations of the binary data, particularly in the case of the (CO2 + nicotine) mixture, were obtained. However, the model could not correlate the ternary data.  相似文献   

6.
Isothermal vapor–liquid equilibrium data at 333.15 K are measured for the binary system tert-amyl methyl ether + ethanol and tert-amyl methyl ether + 2,2,4-trimethylpentane and for ternary system tert-amyl methyl ether + ethanol + 2,2,4-trimethylpentane by using headspace gas chromatography. The experimental vapor–liquid equilibrium data were correlated with GE models (Margules, van Laar, Wilson, NRTL, UNIQUAC) equations. The excess volume and deviations in molar refractivity data are also reported for the same binary and ternary systems at 298.15 K. These data were correlated with the Redlich–Kister equation for the binary systems and the Cibulka equation for the ternary system, respectively. The experimental ternary excess volume and deviations in molar refractivity data, were also compared with the estimated values from the binary contribution models of Tsao–Smith, Kohler, Rastogi and Radojkovi?.  相似文献   

7.
Phase equilibrium data have been measured for the ternary system hyperbranched polyglycerol + methanol + carbon dioxide at temperatures of 313–450 K and pressures up to 13.5 MPa. Phase changes were determined according to a synthetic method using the Cailletet setup. At elevated temperatures the system shows a liquid–liquid–vapor region with lower solution temperatures. Besides the vapor–liquid and liquid–liquid equilibria, the vapor–liquid to vapor–liquid–liquid and vapor–liquid–liquid to liquid–liquid phase boundaries are reported at different polymer molar masses and can serve as test sets for thermodynamic models. A distinct influence of the polymer molar mass on the vapor–liquid equilibrium can be noticed and indicates the existence of structural effects due to the polymer branching. Modeling the systems with the PCP-SAFT equation of state confirms these findings.  相似文献   

8.
Tie-line data for ternary system of (water + 1-propanol + diisopropyl ether (DIPE)) were determined at T = (298.2, 308.2 and 313.2) K under atmospheric conditions. The ternary system exhibited type-I LLE behavior, as (DIPE + water) is the only liquid pair that is partially miscible. The experimental data for this system were predicted with the UNIFAC model with a root mean square deviation of 2.64%. The reliability of the experimental tie-line data was determined through the Othmer–Tobias and Hand plots. Distribution coefficients and separation factors were measured to evaluate the extracting capability of the solvents. The influence of temperature effect on the equilibrium characteristics and separation factor was found to be significant at the temperatures studied.  相似文献   

9.
Isobaric (vapour + liquid) equilibrium (VLE) data for {2-propanol (1) + water (2) + ammonium thiocyanate (3)} were obtained at 101.3 kPa experimentally. An all-glass Fischer-Labodest type still capable of handling pressures from (0.25 to 400) kPa and temperatures up to 523.15 K was used. (Vapour + liquid) equilibrium data of (2-propanol + water) were also obtained at 101.3 kPa experimentally. An equation is proposed to fit the data of salt-containing systems using dimensionless groups called relative ratio. The proposed model was also tested for the salt-containing systems given from the literature.  相似文献   

10.
Isobaric vapor–liquid equilibrium data (VLE) at 101.325 kPa have been determined in the miscible region for 1,1-dimethylethoxy-butane (BTBE) + methanol + water and 1,1-dimethylethoxy-butane (BTBE) + ethanol + water ternary systems, and for their constituent binary systems, methanol + BTBE and ethanol + BTBE. Both binary systems show an azeotrope at the minimum boiling point. In the ternary system BTBE + methanol + water no azeotrope has been found, however, the system BTBE + ethanol + water might form a ternary azeotrope near the top of the binodal. Thermodynamically consistent VLE data have been satisfactorily correlated using the UNIQUAC, NRTL and Wilson equations for the activity coefficient of the liquid phase. Temperature and vapor phase compositions have been compared with those calculated by the group-contribution methods of prediction ASOG, and the original and modified UNIFAC. Predicted values are not in good agreement with experimental values.  相似文献   

11.
Liquid–liquid equilibrium (LLE) data of the solubility (binodal) curves and tie-line end compositions were examined for mixtures of {(water (1) + levulinic acid (2) + dimethyl succinate or dimethyl glutarate or dimethyl adipate (3)} at 298.15 K and 101.3 ± 0.7 kPa. The reliability of the experimental tie-line data was confirmed by using the Othmer–Tobias correlation. The LLE data of the ternary systems were predicted by UNIFAC method. The LLE data were correlated fairly well with UNIQUAC and NRTL models, indicating the reliability of the UNIQUAC and NRTL equations for these ternary systems. The best results were achieved with the NRTL equation, using non-randomness parameter (α = 0.3) for the correlation. Distribution coefficients and separation factors were measured to evaluate the extracting capability of the solvents.  相似文献   

12.
A flow-type method was adopted to measure the vapor–liquid equilibria for methanol + methyl laurate and methanol + methyl myristate systems at 493–543 K, near the critical temperature of methanol (Tc = 512.64 K), and 2.16–8.49 MPa. The effect of temperature and fatty acid methyl esters to the phase behavior was discussed. The mole fractions of methanol in liquid phase are almost the same for both systems. In vapor phase, the mole fractions of methanol are very close to unity at all temperatures. The present vapor–liquid equilibrium data were correlated by PRASOG. A binary parameter was introduced to the combining rule of size parameter. The binary parameters of methanol + fatty acid methyl ester systems were determined by fitting the present experimental data. The correlated results are in good agreement with the experimental data. The vapor–liquid equilibria for methanol + methyl laurate + glycerol and methanol + methyl myristate + glycerol ternary systems were also predicted using the methanol + fatty acid methyl ester binary parameters. The mole fractions of methanol in vapor phase are around unity even if glycerol is included in the systems.  相似文献   

13.
Solid–liquid, liquid–liquid and vapour–liquid equilibrium measurements for binary and ternary systems containing building blocks of biomass origin such as propionic acid, lactic acid and alternative solvents like carbon dioxide and 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ionic liquid have been carried out at 313.15 K. The binary solid–liquid and liquid–liquid equilibrium measurements were performed at ambient pressure. The vapour–liquid equilibrium was studied in the range of pressure from 3.54 to 12 MPa while ternary systems were examined at 9, 10 and 12 MPa. The samples from the coexisting phases were taken and the compositions of both liquid and vapour phases were determined experimentally. The three-phase system was observed for lactic acid + ionic liquid + CO2 as well. The achieved results were correlated using the Peng–Robinson equation of state with the Mathias–Klotz–Prausnitz mixing rule. The set of interaction parameters for the employed equations of state and the mixing rule for the investigated systems were obtained.  相似文献   

14.
Vapor–liquid equilibrium (VLE) at 101.3 kPa have been determined for the ternary system ethanol + 2-butanone + 2,2,4-trimethylpentane (isooctane) and its constituent binary systems: ethanol + 2,2,4-trimethylpentane, ethanol + 2-butanone, and 2-butanone + 2,2,4-trimethylpentane. Minimum boiling azeotropes were observed for all these binary systems. No azeotropic behavior was found for the ternary system. Thermodynamic consistency tests were performed for all VLE data. The activity coefficients of the binary mixtures were satisfactorily correlated with the Wilson, NRTL, and UNIQUAC models. The models with their best-fitted binary parameters were used to predict the ternary vapor–liquid equilibrium.  相似文献   

15.
The vapour pressures of the binary systems 1,2-dichloroethane + cyclohexanone, chloroform + cyclopentanone and chloroform + cyclohexanone mixtures were measured at temperatures between 298.15 and 318.15 K. The vapour pressures vs. liquid phase composition data for three isotherms have been used to calculate the activity coefficients of the two components and the excess molar Gibbs energies, GE, for these mixtures, using Barker's method. Redlich–Kister, Wilson, NRTL and UNIQUAC equations, taking into account the vapour phase imperfection in terms of the 2-nd virial coefficient, have represented the GE values. No significant difference between GE values obtained with these equations has been observed. Our data on vapour–liquid equilibria (VLE) and excess properties of the studied systems are examined in terms of the DISQUAC and modified UNIFAC (Dortmund) predictive group contributions models.  相似文献   

16.
Liquid–liquid equilibrium (LLE) data were measured for three quaternary systems containing sulfolane, nonane + undecane + benzene + sulfolane, nonane + undecane + toluene + sulfolane and nonane + undecane + m-xylene + sulfolane, at T = 298.15 and 313.15 K and ambient pressure. The experimental quaternary liquid–liquid equilibrium data have been satisfactorily represented by using NRTL and UNIFAC-LLE models for the activity coefficient. The calculated compositions based on the NRTL model were found to in a better agreement with the experiment than those based on the UNIFAC-LLE model.  相似文献   

17.
Isothermal vapor-liquid equilibrium data at 333.15 K are reported for the ternary systems {di-methyl carbonate (DMC) + ethanol + benzene} and {DMC + ethanol + toluene} as determined with headspace gas chromatography. The experimental ternary vapor-liquid equilibrium (VLE) data were correlated with different activity coefficient models. The excess volume (VE) and deviations in molar refractivity (ΔR) data are reported for the binary systems {DMC + benzene} and {DMC + toluene} and also for the ternary systems {DMC + ethanol + benzene} and {DMC + ethanol + toluene} at 298.15 K. These VE and ΔR data were correlated with the Redlich-Kister equation for binary systems and the Cibulka equation for ternary systems.  相似文献   

18.
Binary (vapour + liquid) equilibrium data were measured for the {pentafluoroethane (HFC-125) + dimethyl ether (DME)} system at temperatures from (313.15 to 363.15) K. These experiments were carried out with a circulating-type apparatus with on-line gas chromatography. The experimental data were correlated well by the Peng-Robinson Stryjek-Vera equation of state using the Wong-Sandler mixing rules.  相似文献   

19.
(Liquid + liquid) equilibrium (LLE) data for (water + propionic acid + cyclohexanone) were measured under atmospheric pressure and at T = (293.2, 298.2 and 303.2) K. Phase diagrams were obtained by determining solubility and tie-line data. The LLE data of the ternary systems were predicted by UNIFAC method. Distribution coefficients and separation factors were evaluated over the immiscibility regions.  相似文献   

20.
(Liquid + liquid) equilibria and tie lines for the ternary systems of (water + phosphoric acid + 1-butanol) and (water + phosphoric acid + butyl acetate) were measured at T = 308.2 K. The experimental ternary (liquid + liquid) equilibrium data were correlated with the UNIQUAC model. The reliability of the experimental tie lines was confirmed using Othmer-Tobias correlation. The average root-mean-square deviation (RMSD) values of (water + phosphoric acid + 1-butanol) and (water + phosphoric acid + butyl acetate) systems were 2.17% and 2.16%, respectively. Distribution coefficients and separation factors were measured to evaluate the extracting capability of the solvents. The results show that butyl acetate may be considered as a reliable organic solvent for the extraction of phosphoric acid from aqueous solutions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号