首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The equilibrated grain boundary groove shapes for solid Bi solution (Bi–6.1 at.%Zn–0.38 at.%Al) in equilibrium with the Bi–Al–Zn eutectic liquid have been observed from quenched sample with a radial heat flow apparatus. The Gibbs–Thomson coefficient, solid–liquid interfacial energy and grain boundary energy of solid Bi solution have been determined from the observed grain boundary groove shapes. The variations of thermal conductivity with temperature for solid Bi solution (Bi–6.1 at.%Zn–0.38 at.%Al) has been measured up to five degree below the melting temperature by using radial heat flow technique. The ratio of thermal conductivity of equilibrated Bi–Al–Zn eutectic liquid phase to solid Bi solution (Bi–6.1 at.%Zn–0.38 at.%Al) phase has also been measured with a Bridgman type growth apparatus at the melting temperature.  相似文献   

2.
The equilibrated grain boundary groove shapes for solid succinonitrile (SCN) in equilibrium with the succinonitrile (SCN) dichlorobenzene (DCB) eutectic liquid were directly observed. From the observed grain boundary groove shapes, the Gibbs-Thomson coefficient and solid-liquid interfacial energy for solid SCN in equilibrium with the SCN DCB eutectic liquid have been determined to be (5.43 ± 0.27) × 10−8 K m and (7.95 ± 0.80) × 10−3 J m−2 with present numerical method and Gibbs-Thomson equation, respectively. The grain boundary energy of SCN rich phase of the SCN DCB eutectic system has been determined to be (14.77 ± 1.77) × 10−3 J m−2 from the observed grain boundary groove shapes. Thermal conductivity of eutectic solid phase and eutectic liquid phase at the eutectic melting temperature have also been measured to be 0.269 and 0.231 W/K m, respectively.  相似文献   

3.
The variations of thermal conductivity with temperature for Pb–Sn alloys were measured using a radial heat flow apparatus. The variations of electrical conductivity with the temperature for same alloys were determined from the Wiedemann–Franz law by using the measured values of thermal conductivity. According to present experimental results, the thermal and electrical conductivity of Pb–Sn alloys linearly decrease with increasing temperature but exponentially increase with increasing the composition of Sn. The enthalpy of fusion and the change of specific heat for Pb–Sn alloys were also determined by means of differential scanning calorimeter (DSC) from heating trace during the transformation from eutectic liquid to eutectic solid.  相似文献   

4.
The thermal conductivity of ammonia borane (AB) complex, in the temperature range of 300-420 K, was measured experimentally using ASTM method E 1225. At 300 K, the thermal conductivity of pure AB was found to be approximately 15 W/m-K. A composite pellet prepared by mixing 10 wt% aluminum powder with AB had a thermal conductivity that was a factor of 4 higher than that of pure AB complex. The extent of the pyrolytic weight loss for AB/Al composite and pure AB complex was 25.4% and 33.9%, respectively—indicating comparatively lower levels of volatile species evolved as impurities (e.g. monomeric aminoborane, borazine, diborane, etc.) in the product hydrogen.  相似文献   

5.
A technique of measurement of thermal conductivity of solid materials by differential scanning calorimetry is presented. It concerns small samples having a diameter less than 8.0 mm, a height less than 2.0 mm and a low thermal conductivity. This method requires many samples with different heights which are heated in such a way that a calibration substance put on their top undergoes a first-order phase transition. The analysis of heat transfer of a such experiment predicts that the slope of the differential power during the transition is proportional to the factor 2 and inversely proportional to the sum of the thermal resistances. A measurement of the thermal conductivity of samples made of polytetrafluoroethylene powder, compressed at the density of 2.10±0.03 g cm−3, has been performed; the value obtained is 0.33±0.02 W m−1 K−1. Measurements of thermal conductivity of small metal hydride pellets are also presented. The precision of the measurements are on average 10%.  相似文献   

6.
C. Cagran 《Thermochimica Acta》2006,445(2):104-110
Within the present work, recent investigation carried out with a fast pulse-heating technique on silver, copper and the Ag-28Cu binary alloy in the solid and the molten states are presented.Properties like enthalpy or electrical resistivity of a pulse-heated sample can be obtained for a wide temperature range (solid state up into the liquid state) from the directly measured base quantities, namely: current through the sample, voltage drop across the specimen and pyrometric determined temperature. As a further result, enthalpy of fusion is computable from the enthalpy values at the melting transition or the solidus/liquidus transition. These thermophysical properties (mainly of the melting transition and the subsequent liquid phase) are commonly used as input data for numerical casting simulations.The measurements presented within this work deal with group1 11 elements silver, copper and the binary eutectic 72-28 (wt.%) alloy of the two elements, respectively. One of the main goals of this work is to investigate to which extent the thermophysical properties of the two pure materials influence or determine the properties of its corresponding alloy. It is to proof if data for pure materials can be used to predict the thermophysical properties of simple alloys. For this specific copper-silver alloy, there is a certain mutual solid solubility with a quite large miscibility gap. Ag-28Cu is not a single phase alloy but an eutectic alloy with two phases.  相似文献   

7.
Reaction steps and mechanisms of the thermal dehydration of lithium metaborate dihydrate were investigated by means of thermoanalytical measurements, high temperature powder X-ray diffractometry, FT-IR spectroscopy, and microscopic observations. The first half of thermal dehydration was characterized by the melting of the sample producing viscous surface layer, the formation of bubbles on the particle surfaces, and the sudden mass-loss taking place by an opportunity of cracking and/or bursting of the bubble surface layer. The second half of the dehydration with a long-tailed mass-loss process in a wide temperature region was divided further into three distinguished reaction steps by the measurements of controlled rate thermal analysis. During the course of the thermal dehydration, four different poorly crystalline phases of intermediate hydrates were observed, in addition to an amorphous phase produced by an isothermal annealing. Just after completing the thermal dehydration, an exothermic DTA peak of the crystallization of β-LiBO2 was appeared at around 750 K. The phase transition from β-LiBO2 to α-LiBO2 was observed in the temperature range of 800-900 K, which subsequently melted by indicating a sharp endothermic DTA peak with the onset temperature at 1101.4 ± 0.6 K.  相似文献   

8.
The kinetics of Al-Si spinel phase crystallization from calcined kaolin   总被引:1,自引:0,他引:1  
The crystallization of Al-Si spinel from medium ordered kaolin with high content of kaolinite was investigated using the differential thermal analysis (DTA). The apparent activation energy of the process was evaluated from the dependence of exothermic peak of crystallization on heating rate. Within the applied interval of heating rate (1-40 K min−1) the temperature of peak maximum increases from initial value of 1220.5 K in about 54.2 K. The apparent activation energy of the process 856±2 kJ mol−1was calculated using the Kissinger equation. The growth morphology of Al-Si spinel crystal was evaluated from the Avrami parameter. The average value of morphology parameter determined within the observed interval of heating rate is 3.08±0.03. This value indicates that crystallization mechanism of Al-Si spinel phase proceeds by bulk nucleation of the new phase with constant number of nuclei and that the three-dimensional growth of crystals is controlled by the reaction rate on the phases interface.  相似文献   

9.
In this study, a three-phase hollow fiber liquid-phase microextraction (HF-LPME) method combined with liquid chromatography–mass spectrometry was developed for direct determination of four non-steroidal anti-inflammatory drugs (ketoprofen, naproxen, diclofenac and ibuprofen) in sewage sludge. The drugs were extracted from non-spiked and spiked slurry samples with different amounts of sludge into an organic phase and then back-extracted into an aqueous phase held in the lumen of the hollow fiber. High enrichment factors ranging from 2761 to 3254 in pure water were achieved. In sludge samples, repeatability and inter-day precision were tested with relative standard deviation values between 10–18% and 7–15%, respectively. Average concentrations of 29 ± 9, 138 ± 2, 39 ± 5 and 122 ± 7 ng/g were determined in dried sludge from Källby sewage treatment plant (Sweden) for ketoprofen, naproxen, diclofenac and ibuprofen, respectively.  相似文献   

10.
The thermal diffusivities of near-stoichiometric (U, Ce)O2 solid solutions containing CeO2 up to 22 mol% were investigated in the temperature range of 298-1273 K using the laser flash method. Also, linear thermal expansion measurements were performed in the temperature range of 298-1673 K using a thermomechanical analysis. The thermal conductivities were determined by a calculation of the thermal diffusivity, the density and the specific heat. The thermal conductivities of the tested samples could be expressed as a function of the temperature by the phonon conduction equation k = (A + BT)−1. The thermal conductivity decreased gradually with an increasing Ce content. This was attributable to the increasing lattice defect thermal resistance caused by the U4+, Ce4+ and O2− ions as phonon scattering centers.  相似文献   

11.
This study describes the miscibility phase behavior in two series of biodegradable triblock copolymers, poly(l-lactide)-block-poly(ethylene glycol)-block-poly(l-lactide) (PLLA-PEG-PLLA), prepared from two di-hydroxy-terminated PEG prepolymers (Mn = 4000 or 600 g mol−1) with different lengths of poly(l-lactide) segments (polymerization degree, DP = 1.2-145.6). The prepared block copolymers presented wide range of molecular weights (800-25,000 g mol−1) and compositions (16-80 wt.% of PEG). The copolymer multiphases coexistance and interaction were evaluated by DSC and TGA. The copolymers presented a dual stage thermal degradation and decreased thermal stability compared to PEG homopolymers. In addition, DSC analyses allowed the observation of multiphase separation; the melting temperature, Tm, of PLLA and PEG phases depended on the relative segment lengths and the only observed glass transition temperature (Tg) in copolymers indicated miscibility in the amorphous phase.  相似文献   

12.
Thermoelectric (TE) and transport properties of alkaline-earth hexaborides were examined to investigate the possibility of improvement in their TE performance. As carrier concentration increased, electrical conductivity increased and the absolute value of the Seebeck coefficient decreased monotonically, while carrier mobility was almost unchanged. These results suggest that the electrical properties of the hexaboride depend largely on carrier concentration. Thermal conductivity of the hexaboride was higher than 10 W/m K even at 1073 K, which is relatively high among TE materials. Alloys of CaB6 and SrB6 were prepared in order to reduce lattice thermal conductivity. Whereas the Seebeck coefficient and electrical conductivity of the alloys were intermediate between those of CaB6 and SrB6 single phases, the thermal conductivities of the alloys were lower than those of both single phases. The highest TE performance was obtained in the vicinity of Ca0.5Sr0.5B6, indicating that alloying is effective in improving the performance.  相似文献   

13.
Rapid heating rate thermal analysis, X-ray diffraction, fluorescence spectrometry, and differential dissolution method were used to study the high-temperature phase equilibrium in the Eu–Sb system within the composition range between 37 and 96 at% Sb. The techniques were effective in determination of the vapor–solid–liquid equilibrium since intermediate phases except Eu4Sb3 evaporated incongruently after melting. A thermal procedure was developed to determine the liquidus and solidus lines of the T−x diagram. Six stable phases were identified: two phases, EuSb2 and Eu4Sb3, melt congruently at 1045±10 °C and 1600±15 °C, the Eu2Sb3, Eu11Sb10, Eu5Sb4, and Eu5Sb3 phases melt incongruently at 850±8 °C, 950±10 °C, 1350±15 °C, and 1445±15 °C, respectively. The exact composition shifting of Sb-rich decomposable phases towards Eu4Sb3, the most refractory compound, was determined. The topology of the Eu–Sb phase diagram was considered together with that of the Yb–Sb system.  相似文献   

14.
The parent platinum phthalocyanine (PtPc) and its derivatives with tetranitro (PtTNPc) and tetramine (PtTAPc) on the peripheral benzene were synthesized in the pure state for the first time by microwave irradiation. These complexes were characterized using physico-chemical methods like elemental, electronic absorption, IR spectral, magnetic susceptibility, thermogravimetry and X-ray powder diffraction studies. Kinetic and thermodynamic parameters associated with the thermal decomposition were calculated using the thermogravimetric analytical data. Electrical conductivity studies were carried out using the two-probe technique in the temperature range 298–473 K for each complex to study the effect of the donor and acceptor substituents on the platinum phthalocyanine macrocycle. The electrical conductivities observed at room temperature are in the order PtTAPc > PtTNPc > PtPc. The improvement in the intrinsic electrical conductivity of PtTAPc is due to the electron donating amine substituents which are expected to facilitate greater intermolecular contact and increase interactions, providing a greater pathway for charge carriers.  相似文献   

15.
Fluid–fluid and fluid–solid phase equilibrium were experimentally determined under pressure on the system methane + heptadecane using a full visibility cell. Measurements were performed using the synthetic method on mixtures ranging from pure heptadecane to 99% of methane. The liquid–solid phase transitions were investigated up to 90 MPa and fluid phase boundary was studied in the temperature domain from 293 to 373 K. The appearance of a minimum in the three phase (V–L–S) equilibrium curve is discussed and it is shown that the difference in the solid phase structure and the presence of a solid–solid phase transition do not affect significantly the phase diagram determined.  相似文献   

16.
In this work, an extensive analysis on direct contact membrane distillation (DCMD) performance was developed to estimate the mass flux and the heat efficiency, considering transport phenomena, membrane structural properties and most sensitive process parameters, with the aim to provide optimization guidelines for materials and methods. The results showed that an increase of the temperature gradient resulted in the enhancement of both transmembrane flux and thermal efficiency. The investigation of the effects of membrane properties confirmed that better DCMD performance was achieved when using polymeric membranes characterized by low thermal conductivity (flux and thermal efficiency declined by 26% and 50%, respectively, when increasing thermal conductivity from 0.1 to 0.5 W/m K), and high porosity. An optimal thickness value (around 0.7 mm) was identified when operating at low temperature gradient (<5 °C). However, at higher temperature gradient (>10 °C), increasing the membrane thickness from 0.25 to 1.55 mm resulted in a flux decay of about 70% without a significant improvement in thermal efficiency.  相似文献   

17.
Silver (Ag) and gold (Au) nanoparticles impregnated in nylon membrane filters have been proposed as a new solid phase for preconcentration of mercury from natural waters. Water samples were treated with KMnO4 to convert all mercury species to inorganic Hg2+ and this was followed by the reduction of Hg2+ with NaBH4 to elemental Hg0. The determination of Hg was carried out by thermal evaporation of mercury from membrane filters using Zeeman mercury analyzer RA–915+ (Lumex, Russia). This process does not involve any additional sample treatment and sharply reduces risk of samples contamination. The limit of detection (LOD) was found to be 0.04 ng (absolute mass). Relative LOD was 0.4 ng L−1 for 100 mL of water. The method was validated through the analysis of CRM NRCC Tort–2 (Lobster hepatopancreas) and the found value (0.30 ± 0.07 μg g−1) was in good agreement with the certified value (0.27 ± 0.06 μg g−1). High efficiency of Hg accumulation from aqueous phase to membrane filters can be attributed to a large surface area of nanoparticles.  相似文献   

18.
In this work, microencapsulated phase change materials (PCMs) with a melting temperature of 52 °C have been used to improve thermal inertia phenomena on an elastomeric matrix of styrene–ethylene/butylene–styrene (SEBS) material. The amount of PCMs has varied in the 1–10 wt.% and these materials have been processed by conventional injection molding without PCM degradation. Mechanical characterization of SEBS–PCM compounds has been carried out and the obtained results show good maintenance of both resistant and ductile properties for PCM amounts comprised in the 1–5 wt.% range. Scanning electron microscopy (SEM) analysis has revealed good wetting properties of PCM microcapsules with the SEBS matrix which is a key factor to obtain good mechanical performance. The effect of PCM addition on thermal inertia has been evaluated by active infrared thermography (IRT), showing a remarkable effect on thermal regulation of SEBS in the temperature range close to the melting point of the PCM (52 °C). This thermoregulation effect is more accurate as the PCM content increases. Also, cooling curves have been constructed in order to quantify the thermal inertia effect in a cooling process.  相似文献   

19.
A thermal study using DSC and Hot Stage Microscopy (HSM) was carried out to investigate the interaction in solid state of the binary system PEG 4000 — oxazepam, and to establish their phase diagram. The eutectic composition, which melting occurs at lower temperature as compared with the pure components, has been determined. The results obtained by DSC and HSM have indicated that PEG 4000 — oxazepam mixtures displays no obvious incompatibilities, and that the system shows a typical eutectic behaviour. However because of the closeness of the melting of PEG 4000 to the eutectic temperature, it was difficult to determine precisely the eutectic composition and temperature on the basis of DSC measurements alone. The use of heats of fusion corresponding to physical mixtures allowed an estimation of the eutectic composition at 6% w/w oxazepam. Additional information of temperature (57.6C) and composition (5–10% w/w oxazepam) of the eutectic was obtained by HSM using the contact method. This low melting temperature in this range of compositions offers advantages in terms of drug stability and easy manufacture.  相似文献   

20.
In the present work we are studying the influence of pulse duration (nanosecond (ns) and femtosecond (fs)) at λ = 248 nm on the laser-induced plasma parameters and the quantitative analysis results for elements such as Sn, Zn and Pb, in different types of bronze alloys adopting LIBS in ambient atmosphere. Binary (Sn–Cu), ternary (Sn–Zn–Cu or Sn–Pb–Cu) and quaternary (Sn–Zn–Pb–Cu) reference alloys characterized by a chemical composition and metallurgical features similar to those used in Roman times, were employed in the study. Calibration curves, featuring linear regression coefficients over 98%, were obtained for tin, lead and zinc, the minor elements in the bronze alloys (using the internal standardization method) as well as for copper, the major element. The effects of laser pulse duration and energy on laser-induced plasma parameters, namely the excitation temperature and the electron density have been studied in our effort to optimize the analysis. Finally, LIBS analysis was carried on three real metal objects and the spectra obtained have been used to estimate the type and elemental composition of the alloys based on the calibration curves produced with the reference alloys. The results obtained are very useful in the future use of portable LIBS systems for in situ qualitative and quantitative elemental analysis of bronze artifacts in museums and archaeological sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号