共查询到20条相似文献,搜索用时 15 毫秒
1.
Vapour–liquid equilibria and densities for the ternary system chloroform + tetrahydrofuran + cyclohexane and for the binary mixtures containing chloroform have been determined at 298.15 K. Vapour–liquid equilibrium data have been collected by head-space gas-chromatographic analysis of the vapour phase directly withdrawn from an equilibration apparatus. Density measurements have been carried out by means of a vibrating tube densimeter. Molar excess Gibbs energies GE and volumes VE, as well as activity coefficients and apparent molar volumes of the components, have been obtained from the measured quantities and discussed. The binary chloroform + tetrahydrofuran displays negative deviations from ideality, while chloroform + cyclohexane positive deviations, for both volume and Gibbs energy. The GE's and VE's for the ternary system are positive in the region rich in cyclohexane while negative in the region rich in chloroform + tetrahydrofuran. This indicates that hydrogen bonding between chloroform and tetrahydrofuran molecules produces negative values of GE and VE and strongly influences the behaviour of the ternary system. 相似文献
2.
Gy. Jákli 《The Journal of chemical thermodynamics》2007,39(12):1589-1600
Densities of LiCl, NaCl, KCl, and CsCl in normal and heavy water solutions have been measured using a vibrating-tube densitometer with (1-2) · 10−6 precision at T = (288.15, 298.15, and 308.15) K over a wide concentration range from (0.1 to 5) molal, m. Solvent isotope effects (IE) on apparent molar volumes, as well as both on solute- and solvent-partial molar volumes were evaluated to establish their trend with cationic size in a systematic way. With the exception of the LiCl, both the “normal” standard IEs, , and the “inverse” excess IEs of the solutes, , increase linearly with the electrostriction effect of the cations (1/rion), while with increasing temperature and/or concentration, the excess effects become almost the same.In contrast to the solute excess IEs, which show linear m1/2-dependence over the whole concentration range, except for LiCl, the “inverse” excess IEs of the solvent, , hardly change over the lower concentration range (, m ? 1). However, with further increase of the concentration, these IEs significantly decrease. Individual ionic standard and excess volume contributions are derived and the results are discussed in terms of structural concepts of ionic hydration. 相似文献
3.
A.B. Pereiro 《The Journal of chemical thermodynamics》2007,39(12):1608-1613
Experimental (liquid + liquid) equilibria involving ionic liquids {1,3-dimethylimidazolium methyl sulfate (MMIM MeSO4)}, {2-propanol + ethyl acetate + 1-butyl-3-methylimidazolium hexafluorophosphate (BMIM PF6)} and {2-propanol + ethyl acetate + 1-hexyl-3-methylimidazolium hexafluorophosphate (HMIM PF6)} were carried out to separate the azeotropic mixture ethyl acetate and 2-propanol. Selectivity and distribution ratio values, derived from the tie-lines data, were presented in order to analyze the best separation solvent in a liquid extraction process. Experimental (liquid + liquid) equilibria data were compared with the correlated values obtained by means of the NRTL, Othmer-Tobias and Hand equations. These equations were verified to accurately correlate the experimental data. 相似文献
4.
5.
Electrochemical measurements are done on (water + NaBr + K3PO4 + glycine) mixtures at T (298.15 and 308.15) K by using (Na+ glass) and (Br− solid-state) ion selective electrodes. The mean ionic activity coefficients of NaBr are determined at five NaBr molalities (0.1, 0.3, 0.5, 0.7, and 1) in the above mixtures. The activity coefficients of glycine are evaluated from mean ionic activity coefficients of sodium bromide. The ratio of mean ionic activity coefficient of NaBr in the (water + NaBr + K3PO4 + glycine) mixtures to the mean ionic activity coefficients of NaBr at the same molalities in the (H2O + NaBr) mixtures are correlated by using a new expression. 相似文献
6.
Héctor R. Galleguillos Teófilo A. Graber María E. Taboada Felipe Hernández-Luis 《Fluid Phase Equilibria》2009
The activity coefficients of sodium chloride in the NaCl + NaBF4 + H2O ternary system were experimentally determined at 298.15 K, at ionic strengths of 0.3. 0.5, 1, 2 and 3 mol kg−1 from emf from the bi-ISE cell without liquid junction:
相似文献
ISE-Na|NaCl(mA), NaBF4(mB)|ISE-Cl
7.
Muhammad Javed Iqbal Qaisar Mahmood Malik 《The Journal of chemical thermodynamics》2005,37(12):1347-1350
The apparent molar volume of paracetamol (4-acetamidophenol) in water, 0.1 M HCl and 0.154 M NaCl as solvents at (298.15, 303.15, 308.15 and 310.65) K temperatures and at a pressure of 101.325 kPa were determined from the density data obtained with the help of a vibrating-tube Anton Paar DMA-48 densimeter. The partial molar volume, Vm, of paracetamol in these solvents at different temperatures was evaluated by extrapolating the apparent molar volume versus molality plots to m = 0. In addition, the partial molar expansivity, E°, the isobaric coefficient of thermal expansion, αp, and the interaction coefficient, Sv, have also been computed. The expansivity data show dependence of E° values on the structure of the solute molecules. 相似文献
8.
Daisuke Tomida Satoshi KenmochiKun Qiao Quanxi BaoChiaki Yokoyama 《Fluid Phase Equilibria》2011,307(2):185-189
The viscosities of the mixtures 1-hexyl-3-methylimidazolium hexafluorophosphate ([HMIM][PF6]) + CO2 and 1-octyl-3-methylimidazolium hexafluorophosphate ([OMIM][PF6]) + CO2 were measured with a rolling ball viscometer. The CO2 mole fraction for one mixture ranged up to 0.434 and the other up to 0.447. The viscosities were measured at 293.15-353.15 K and 10-20.0 MPa. The experimental uncertainty in viscosity was estimated to be within ±3.0%. The experimental data were compared with McAllister's three-body model, which correlated with the experimental data within average absolute deviations of 5.9%. 相似文献
9.
In this work, liquid–liquid equilibrium data were measured for three quinary mixtures (nonane + undecane + benzene + toluene + sulfolane), (nonane + undecane + benzene + m-xylene + sulfolane) and (nonane + undecane + toluene + m-xylene + sulfolane) at 298.15 and 313.15 K and ambient pressure. The experimental LLE data were determined by using a jacketed glass cell with temperature controlled. The quantitative analysis was performed by using a Varian gas chromatograph equipped with a flame ionization detector and a SPB™-1 column. The experimental quinary liquid–liquid equilibrium data have been satisfactorily correlated by using NRTL and UNIFAC-LLE models. The calculated values based on the NRTL model were found to be in a better agreement with the experiment than those based on the UNIFAC-LLE model. 相似文献
10.
Liquid–liquid equilibrium (LLE) data were measured for three quaternary systems containing sulfolane, nonane + undecane + benzene + sulfolane, nonane + undecane + toluene + sulfolane and nonane + undecane + m-xylene + sulfolane, at T = 298.15 and 313.15 K and ambient pressure. The experimental quaternary liquid–liquid equilibrium data have been satisfactorily represented by using NRTL and UNIFAC-LLE models for the activity coefficient. The calculated compositions based on the NRTL model were found to in a better agreement with the experiment than those based on the UNIFAC-LLE model. 相似文献
11.
12.
13.
Guler Ayranci 《The Journal of chemical thermodynamics》2007,39(12):1620-1631
Apparent molar volumes and apparent molar isentropic compressibilities of ascorbic acid (vitamin C) and thiamine hydrochloride (vitamin B1) were determined from accurately measured density and sound velocity data in water and in aqueous NaCl solutions at (283.15, 293.15, 298.15, 303.15, 308.15, and 313.15) K. These volume and compressibility data were extrapolated to zero concentration using suitable empirical or theoretical equations to determine the corresponding infinite dilution values. Apparent molar expansibilities at infinite dilution were determined from slopes of apparent molar volume vs. temperature plots. Ionization of both ascorbic acid and thiamine hydrochloride were suppressed using sufficiently acidic solutions. Apparent molar volumes at infinite dilution for ascorbic acid and thiamine hydrochloride were found to increase with temperature in acidic solutions and in the presence of co-solute, NaCl. Apparent molar expansibility at infinite dilution were found to be constant over the temperature range studied and were all positive, indicating the hydrophilic character of the two vitamins studied in water and in the presence of co-solute, NaCl. Apparent molar isentropic compressibilities of ascorbic acid at infinite dilution were positive in water and in the presence of co-solute, NaCl, at low molalities. Those of thiamine hydrochloride at infinitive dilution were all negative, consistent with its ionic nature. Transfer apparent molar volumes of vitamins at infinite dilution from water solutions to NaCl solutions at various temperatures were determined. The results were interpreted in terms of complex vitamin-water-co-solute (NaCl) interactions. 相似文献
14.
15.
16.
Experimental density and the refractive index of the ternary mixture acetone + n-hexane + water, and their binary systems were experimentally measured and correlated at 298.15 K and atmospheric pressure. A maximum in refractive indices has been observed for the acetone + water system while the excess molar volume and the molar refraction change are all negative. For the mixture acetone + n-hexane, the excess molar volume is always positive and the molar refraction change of mixing showed a S-shaped dependence on acetone composition. The excess molar volumes and molar refraction changes of mixing were correlated using the Redlich-Kister expression and Cibulka equation. The coefficients and standard deviation between the experimental and fitted values were estimated. Good agreement between both results was obtained. 相似文献
17.
I.M. Abdulagatov A. Tekin J. Safarov A. Shahverdiyev E. Hassel 《The Journal of chemical thermodynamics》2008,40(9):1386-1401
The density of seven {(0.0087, 0.0433, 0.1302, 0.2626, 0.4988, 0.7501, and 0.9102) mole fraction of [BMIM][BF4]} binary {methanol (1) + [BMIM][BF4] (2)} (1-butyl-3-methylimidazolium tetrafluoroborate) mixtures has been measured with a vibrating-tube densimeter. Measurements were performed at temperatures from (298 to 398) K and at pressures up to 40 MPa. The total uncertainties of density, temperature, pressure, and concentration measurements was estimated to be less than 0.15 kg · m−3, 15 mK, 5 kPa, and 10−4, respectively. The uncertainties reported in this paper are expanded uncertainties at the 95% confidence level with a coverage factor of k = 2. The effect of temperature, pressure, and concentration on the density and derived volumetric properties such as excess, apparent, and partial molar volumes was studied. The measured densities were used to develop a Tait-type equation of state for the mixture. The structural properties such as direct and total correlation function integrals and cluster size were calculated using the Krichevskii function concept and the equation of state for the mixture at infinite dilution. 相似文献
18.
Pamela da Rocha PatrícioAparecida Barbosa Mageste Leandro Rodrigues de LemosRaquel Moreira Maduro de Carvalho Luis Henrique Mendes da SilvaMaria C. Hespanhol da Silva 《Fluid Phase Equilibria》2011,305(1):1-8
The phase diagrams of PEO1500 + sodium tartrate + water, PPO400 + sodium tartrate + water, PEO1500 + sodium succinate + water, PPO400 + sodium succinate + water, PEO1500 + sodium citrate + water, PPO400 + sodium citrate + water and PPO400 + sodium acetate + water aqueous two-phase systems were determined at (283.15, 298.15, and 313.15) K. Both equilibrium phases composition were analyzed by conductimetry and refractive index. In this paper, the influences of polymer hydrophobicity, salt nature and temperature on the phase diagram were analyzed. The phase separation processes was endothermic and the hydrophobic increase make easier the phase splitting, while the electrolyte capacity to induce phase separation follow the order: citrate > tartrate > succinate. The consistency of the tie-line data was ascertained by applying the Othmer-Tobias correlation. The experimental data were correlated with the NRTL model for the activity coefficient, with estimation of new interaction energy parameters. The results, analyzed in terms of root mean square deviations between experimental and calculated compositions, were considered satisfactory. 相似文献
19.
Isothermal vapor–liquid equilibrium data determined by the static method at 303.15 K are reported for the binary systems propyl vinyl ether + 1-propanol, 1-propanol + 2,2,4-trimethylpentane and propyl vinyl ether + 2,2,4-trimethylpentane and also for the ternary system propyl vinyl ether + 1-propanol + 2,2,4-trimethyl-pentane. Additionally, new excess volume data are reported for the same systems at 298.15 K. The experimental binary and ternary vapor–liquid equilibrium data were correlated with different GE models and excess molar volume data were correlated with the Redlich–Kister equation for the binary systems and the Cibulka equation for the ternary system, respectively. 相似文献
20.
This work is a continuation of our studies on experimental measurements of physical properties on binary mixtures of the ionic liquid (IL) family 1-alkyl-3-methyl imidazolium tetrafluoroborate (CnMIM-BF4) with water and ethanol. Here, we present density for the ternary system Butyl-MIM-BF4 + ethanol + water at two temperatures (298.15 K and 323.15 K) and seven pressures (from 0.1 to 30 MPa). It should be noted that BMIM-BF4 is the only IL of the family CnMIM-BF4 that can be mixed with water and ethanol in all range of concentrations at room conditions. From the density data measured in function of pressure and temperature other important derived thermodynamic properties can be calculated, such us excess molar volumes, isothermal compressibility, isobaric expansion and the thermal pressure coefficients. These properties for selected ternary mixtures will be discussed and compared with data from the scarce number of published results for similar ternary mixtures with this same IL. 相似文献