首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
In petroleum exploration and production operations, gas hydrates pose serious flow assurance, economic and safety concerns. Thermodynamic inhibitors are widely used to reduce the risks associated with gas hydrate formation. In this communication, in order to establish the effects of salts and thermodynamic inhibitors on the locus of incipient hydrate–liquid water–vapour (H–LW–V) curve, we report new experimental dissociation data for various quaternary systems, methane/water/thermodynamic inhibitor/salts for a pressure range of 6.89–29 MPa.  相似文献   

2.
Solubility of methane in water and in an aqueous growth medium for the cultivation of methanotrophs bacteria was determined over the temperature range 293.15 to 323.15 K and at atmospheric pressure. The measurements were carried out in a Ben-Naim/Baer type apparatus with a precision of about ±0.3%. The experimental results were determined using accurate thermodynamic relations. The mole fractions of the dissolved gas at the gas partial pressure of 101.325 kPa, the Henry coefficients at the water vapour pressure and the Ostwald coefficients at infinite dilution were obtained. A comparison between the solubility of methane in water and those observed in fermentation medium over the temperature range of 298.15 to 308.15 K has shown that this gas is about ±2.3% more soluble in water.The temperature dependence of the mole fractions of methane was also determined using the Clarke-Glew-Weiss equation and the thermodynamic quantities, Gibbs energy, enthalpy and entropy changes, associated with the dissolution process were calculated.Furthermore, the experimental Henry coefficients for methane in water are compared with those calculated by the scaled particle theory. The estimated Henry coefficients are about ±4% lower than the experimental ones.  相似文献   

3.
Estimating the feasibility of acid gas geological disposal requires the knowledge of the water content of the gas phase at moderate pressures and temperatures (typically below 50 MPa, below 380 K) and up to 6 mol NaCl. In this paper, a non-iterative model is developed to predict the water content of sour and acid gases at equilibrium with pure water and brine. This model is based on equating the chemical potential of water and using the modified Redlich–Kwong equation of state to calculate the fugacity of the gas phase. The water content of pure CH4, CO2 and H2S are represented with average absolute deviations of less than 3.36, 7.04 and 8.4%, respectively. Experimental data of the water content of mixtures of the acid gases were reproduced with average absolute deviations of less than 6.32%.  相似文献   

4.
In this communication, we report experimental dissociation conditions for region clathrate hydrates of methane + carbon dioxide in gas–liquid water–hydrate (G–Lw–H) equilibrium. The temperature and pressure conditions are in the range of (279.1–289.9) K and (2.96–13.06) MPa, respectively. Concentrations of carbon dioxide in the feed gas are also varied. An isochoric pressure-search method was used to perform the measurements. The dissociation data generated in this work along with the literature data are compared with the predictions of a thermodynamic model and a previously reported empirical equation. A discussion is made on the deviations between the experimental and predicted data.  相似文献   

5.
The present study experimentally demonstrated clathrate hydrate formation in the systems of (methane + water + each of the three methylcyclohexanone isomers, i.e., 2-methylcyclohexanone, 3-methylcyclohexanone, and 4-methylcyclohexanone) and measured the first data of the quadruple (water rich liquid + hydrate + methylcyclohexanone rich liquid + methane rich vapor) equilibrium pressure and temperature conditions in these systems over the temperatures from T=273 K to T=281 K. In the three systems with methylcyclohexanone, the measured equilibrium pressure at each given temperature is ∼1.3 MPa lower than that in a structure-I hydrate forming (methane + water) system without any methylcyclohexanone, which suggests the formation of structure-H hydrates with methylcyclohexanones as large-molecule guest substances. Among the three systems, 3-methylcyclohexanone provides the highest equilibrium pressure, and 2-methylcyclohexanone, the lowest.  相似文献   

6.
Literature data for the hydrate temperature depression by mono-ethylene glycol (MEG) show some scattering and no thermodynamic model has been able to match all of the available data found in the open literature. This paper presents hydrate equilibrium data for a mixture of 88.13 mol% methane and 11.87 mol% propane with MEG added to the water phase in concentrations from 0 to 60 wt%. That particular hydrocarbon mixture was chosen because it with pure water at pressures above 60 bar shows hydrate dissociation temperatures above 20 °C and because hydrate dissociation temperatures above the freezing point of water are still seen when the aqueous phase contains 50 wt% MEG. This range of inhibitor dosage is typical in North Sea pipelines, and for optimal hydrate control it is vital to have high quality experimental data of hydrate equilibrium. Previously published data for the same hydrocarbon mixture as used in this study show a lower hydrate depression by MEG compared to other available data. The new data from this work show that MEG is more efficient as a hydrate inhibitor than the previously published data for the same system has suggested. The new data and earlier MEG inhibition data for other systems can all be modeled within experimental uncertainty using the hydrate model of Munck et al. and a conventional cubic equation of state for the H2O-MEG component pair.  相似文献   

7.
Natural gas hydrates are ice-like inclusion compounds that form at high pressures and low temperatures in the presence of water and light hydrocarbons. Hydrate formation conditions are favorable in gas and oil pipelines, and their formation threatens gas and oil production. Thermodynamic hydrate inhibitors (THIs) are chemicals (e.g., methanol, monoethylene glycol) deployed in gas pipelines to depress the equilibrium temperature required for hydrate formation. This work presents a novel application of a stepwise differential scanning calorimeter (DSC) measurement to accurately determine the methane hydrate phase boundary in the presence of THIs. The scheme is first validated on a model (ice + salt water) system, and then generalized to measure hydrate equilibrium temperatures for pure systems and 0.035 mass fraction NaCl solutions diluted to 0, 0.05, 0.10, and 0.20 mass fraction methanol. The hydrate equilibrium temperatures are measured at methane pressures from (7.0 to 20.0) MPa. The measured equilibrium temperatures are compared to values computed by the predictive hydrate equilibrium tool CSMGem.  相似文献   

8.
Storage and transportation of natural gas as gas hydrate (“gas-to-solids technology”) is a promising alternative to the established liquefied natural gas (LNG) or compressed natural gas (CNG) technologies. Gas hydrates offer a relatively high gas storage capacity and mild temperature and pressure conditions for formation. Simulations based on the van der Waals–Platteeuw model and molecular dynamics (MD) are employed in this study to relate the methane gas content/occupancy in different hydrate systems with the hydrate stability conditions including temperature, pressure, and secondary clathrate stabilizing guests. Methane is chosen as a model system for natural gas. It was found that the addition of about 1% propane suffices to increase the structure II (sII) methane hydrate stability without excessively compromising methane storage capacity in hydrate. When tetrahydrofuran (THF) is used as the stabilizing agent in sII hydrate at concentration between 1% and 3%, a reasonably high methane content in hydrate can be maintained (∼85–100, v/v) without dealing with pressures more than 5 MPa and close to room temperature.  相似文献   

9.
A new experimental technique has been developed to measure the mole fraction of the gas hydrate former in the bulk liquid phase, at the onset of hydrate growth and thereafter, in a semi-batch stirred tank reactor. The mole fraction of carbon dioxide and methane in the bulk liquid phase was obtained for the first 11 and 13 min of the growth stage, for the carbon dioxide–water and methane–water systems respectively. Experiments were conducted at temperatures ranging from 275.3 K to 281.4 K and at pressures ranging from 2017 kPa to 4000 kPa for the carbon dioxide–water system, while temperatures ranging from 275.1 K to 279.1 K and pressures ranging from 3858 kPa to 6992 kPa were investigated for the methane–water system. The mole fraction of carbon dioxide in the bulk liquid phase was found to be constant during the growth period, varying on average by 0.6% and 0.3% at 275.4 K and 279.5 K. Similarly, the mole fraction of methane in the bulk liquid phase was found to remain constant during the growth stage, varying on average by 2.0%, 0.8% and 0.2% at 275.1 K, 277.1 K and 279.1 K respectively. The mole fraction of the gas hydrate former in the bulk liquid phase was also found to increase with pressure and decrease with temperature, while remaining greater than its hydrate-liquid water equilibrium value. As a result, an alternate formulation of a hydrate growth model is proposed.  相似文献   

10.
The effect of silica concentration in dry water microdispersion on the kinetics of formation of methane hydrates and efficiency of their self-preservation was studied beyond the range of thermodynamic stability of hydrates below 273 K. For dry water used for the formation of gas hydrates, there is a certain concentration of silica that provides an optimum combination of high rate of formation and self-preservation efficiency of hydrates during their dissociation. Below this concentration, the rate of formation of methane hydrates in dry water significantly decreases with the silica content, while the self-preservation efficiency remains almost constant. Above this concentration, the formation rate changes insignificantly when the silica concentration increases, and the self-preservation efficiency abruptly decreases. Possible reasons for this behavior of hydrates were considered. It was found that the specific surface area of silica used to form dry water can significantly affect the formation rate of gas hydrates and their self-preservation efficiency.  相似文献   

11.
Accurate knowledge of hydrate phase equilibrium in the presence of inhibitors is crucial to avoid gas hydrate formation problems and to design/optimize production, transportation and processing facilities. In this communication, we report new experimental dissociation data for various systems consisting of methane/water/ethylene glycol and natural gas/water/ethylene glycol. A statistical thermodynamic approach, with the Cubic-Plus-Association equation of state, is employed to model the phase equilibria. The hydrate-forming conditions are modelled by the solid solution theory of van der Waals and Platteeuw. The thermodynamic model was used to predict the hydrate dissociation conditions of methane and natural gases in the presence of distilled water or ethylene glycol aqueous solutions. Predictions of the developed model are validated against independent experimental data and the data generated in this work. A good agreement between predictions and experimental data is observed, supporting the reliability of the developed model.  相似文献   

12.
Gas hydrates represent an attractive way of storing large quantities of gas such as methane and carbon dioxide, although to date there has been little effort to optimize the storage capacity and to understand the trade‐offs between storage conditions and storage capacity. In this work, we present estimates for gas storage based on the ideal structures, and show how these must be modified given the little data available on hydrate composition. We then examine the hypothesis based on solid‐solution theory for clathrate hydrates as to how storage capacity may be improved for structure II hydrates, and test the hypothesis for a structure II hydrate of THF and methane, paying special attention to the synthetic approach used. Phase equilibrium data are used to map the region of stability of the double hydrate in PT space as a function of the concentration of THF. In situ high‐pressure NMR experiments were used to measure the kinetics of reaction between frozen THF solutions and methane gas, and 13C MAS NMR experiments were used to measure the distribution of the guests over the cage sites. As known from previous work, at high concentrations of THF, methane only occupies the small cages in structure II hydrate, and in accordance with the hypothesis posed, we confirm that methane can be introduced into the large cage of structure II hydrate by lowering the concentration of THF to below 1.0 mol %. We note that in some preparations the cage occupancies appear to fluctuate with time and are not necessarily homogeneous over the sample. Although the tuning mechanism is generally valid, the composition and homogeneity of the product vary with the details of the synthetic procedure. The best results, those obtained from the gas–liquid reaction, are in good agreement with thermodynamic predictions; those obtained for the gas–solid reaction do not agree nearly as well.  相似文献   

13.
Phase equilibrium measurements of single and mixed organic clathrate hydrates with hydrogen were determined within a pressure range of 2.0-14.0 MPa. The organic compounds studied were furan, 2,5-dihydrofuran, tetrahydropyran, 1,3-dioxolane and cyclopentane. These organic compounds are known to form structure II clathrate hydrates with water. It was found that the addition of hydrogen to form a mixed clathrate hydrate increases the stability compared to the single organic clathrate hydrates. Moreover, the mixed clathrate hydrate also has a much higher stability compared to a pure hydrogen structure II clathrate hydrate. Therefore, the organic compounds act as promoter materials. The stabilities of the single and mixed organic clathrate hydrates with hydrogen showed the following trend in increasing order: 1,3-dioxolane < 2,5-dihydrofuran < tetrahydropyran < furan < cyclopentane, indicating that both size and geometry of the organic compound determine the stability of the clathrate hydrates.  相似文献   

14.
A new thermodynamic calculation procedure is introduced to predict the equilibrium conditions of multicomponent gas hydrates containing hydrogen. This new approach utilizes an excess Gibbs potential term to account for second- or higher-order water-cavity distortions due to the presence of multiple guest species. The excess Gibbs potential describes changes in reference chemical potentials according to different compositions of guest mixtures in the hydrate phase. To determine the equilibrium conditions of multicomponent gas hydrates, the excess Gibbs potential term is incorporated to the Lee-Holder model along with the Zele-Lee-Holder cell distortion model. For binary gas hydrates between hydrogen and the other gas molecule, the predicted equilibrium pressure deviates within 10-20% from the experimental value. For the ternary and quaternary mixture hydrates, the model prediction is reasonably good but its error increases with increasing pressure and temperature under the presence of THF.  相似文献   

15.
The thermodynamic and dielectric properties of the simple point charge extended (SPC/E) water model are examined over wide temperature and density range by means of molecular dynamic simulations. Accurate analytical thermodynamic and dielectric equations of state for the SPC/E pair-potential are presented. Parameterizations cover a broad range of high temperature states including the critical region. The critical point parameters of SPC/E water were determined to be ρc = 0.276 g/cm3, Tc = 640.25 K and pc = 164.37 bar. The value of the static dielectric constant of SPC/E water at its critical point was calculated to be 5.35, which compares remarkably well with the corresponding experimental value of 5.36. Analytical thermodynamic and dielectric equations for the saturated liquid and vapor densities are also given.  相似文献   

16.
Isothermal vapor–liquid equilibrium (VLE) for tetrahydrothiophene + 2,2,4-trimethylpentane and tetrahydrothiophene + 2,4,4-trimethyl-1-pentene at 358.15 and 368.15 K were measured with a circulation still. All systems studied exhibit positive deviation from Raoult's law. No azeotropic behavior was found in all systems at the measured temperatures. The experimental results were correlated with the Wilson model and compared to COSMO-SAC predictive model. Analyses of liquid and vapor phase composition were determined with gas chromatography. All VLE measurements passed the three thermodynamic consistency tests used. The activity coefficients at infinite dilution are also presented.  相似文献   

17.
The first results of studying the possibility of self-preservation of methane hydrates produced in a “dry-water” dispersion were presented. It was shown for the first time that the anomalously low rates of dissociation of gas hydrates at a temperature below 273 K and a pressure of 0.1 MPa, which were previously known for methane hydrates, are also characteristic of methane hydrates forming in dry water. Methane hydrates obtained in dry water containing no more than 5 wt % stabilizer (hydrophobized silica nanoparticles) are primarily solids at a pressure of 0.1 MPa and a temperature below 273 K. At a stabilizer content of dry water of 10 or 15 wt %, a significant part of the hydrate sample looks like a free-flowing powder. The powder fraction increases with increasing stabilizer content, which reduces the efficiency of self-preservation of methane hydrates.  相似文献   

18.
This paper reports an attempt at acquiring phase-equilibrium pressure (p) versus temperature (T) data for ozone-containing clathrate hydrates formed from an ozone + oxygen gas mixture, a hydrophobic hydrate-forming liquid, and water in the liquid state. For dealing with ozone (O3), a chemically unstable material continuously decaying to oxygen (O2) in the gas phase, we devised a new method, i.e., a modified pressure-search method, to determine the equilibrium p-T conditions while maintaining the ozone concentration in the gas phase nearly constant by repeatedly replacing the contents of the gas phase with a freshly generated O3 + O2 mixture. Using carbon tetrachloride (CCl4) as the hydrophobic hydrate-forming liquid, we obtained equilibrium p-T data in the range of 0.167 MPa ≤ p ≤ 0.361 MPa and 275.6 K ≤ T ≤ 277.3 K in the presence of a gas phase containing O3 at the molar concentration of 6.9 ± 0.8%. We also obtained, for comparison, the corresponding p-T data, using pure O2 gas, instead of the O3 + O2 mixture, and the conventional pressure-search method. The two data groups obtained from the O3-containing and O3-free systems, respectively, show simple, mutually consistent p-T relations each well fitted by the Clausius-Clapeyron equation assuming a constant enthalpy of hydrate dissociation. The paper also describes our additional attempt at obtaining equilibrium p-T data using 1,1-dichloro-1-fluoroethane (R141b) as a substitute for CCl4. Because of the partial decomposition of R141b due to the coexistence of O3 and water, however, we obtained only limited data which are tentative in nature.  相似文献   

19.
The cage occupancy of hydrogen in the single-crystals of simple hydrogen hydrates and hydrogen + argon mixed-gas hydrates was investigated by means of in situ Raman spectroscopy under the three-phase (hydrate + water + fluid) equilibrium condition. In the equilibrium pressure region higher than approximately 25 MPa, four hydrogen cluster and argon competitively occupied the large cages of structure-II hydrogen + argon mixed-gas hydrates. In addition, Raman spectroscopic analysis at liquid nitrogen temperature (77 K) supports that the clusters of two, three, or four hydrogen molecules occupy large cages.  相似文献   

20.
For reasonable assessment and safe exploitation of marine gas hydrate resource, it is important to determine the stability conditions of gas hydrates in marine sediment. In this paper, the seafloor water sample and sediment sample (saturated with pore water) from Shenhu Area of South China Sea were used to synthesize methane hydrates, and the stability conditions of methane hydrates were investigated by multi-step heating dissociation method. Preliminary experimental results show that the dissociation temperature of methane hydrate both in seafloor water and marine sediment, under any given pressure, is depressed by approximately -1.4 K relative to the pure water system. This phenomenon indicates that hydrate stability in marine sediment is mainly affected by pore water ions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号