首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
《Fluid Phase Equilibria》2004,215(2):227-236
In the present work, a group contribution method is proposed for the estimation of the vapor pressure of fatty compounds. For the major components involved in the vegetable oil industry, such as fatty acids, esters and alcohols, triacylglycerols (TAGs) and partial acylglycerols, the optimized parameters are reported. The method is shown to be accurate when it is used together with the UNIFAC model for estimating vapor–liquid equilibria (VLE) of binary and multicomponent fatty mixtures comprised in industrial processes such as stripping of hexane, deodorization and physical refining. The results achieved show that the group contribution approach is a valuable tool for the design of distillation and stripping units since it permits to take into account all the complexity of the mixtures involved. This is particularly important for the evaluation of the loss of distillative neutral oil that occurs during the processing of edible oils.The combination of the vapor pressure model suggested in the present work with the UNIFAC equation gives results similar to those already reported in the literature for fatty acid mixtures and oil–hexane mixtures. However, it is a better tool for predicting vapor–liquid equilibria of a large range of fatty systems, also involving unsaturated compounds, fatty esters and acylglycerols, not contemplated by other methodologies. The approach suggested in this work generates more realistic results concerning vapor–liquid equilibria of systems encountered in the edible oil industry.  相似文献   

2.
Nitriles are strong polar compounds showing a highly non-ideal behavior, which makes them challenging systems from a modeling point of view; in spite of this, accurate predictions for the vapor–liquid equilibria of these systems are needed, as some of them, like acetonitrile (CH3CN) and propionitrile (C2H5CN), play an important role as organic solvents in several industrial processes. This work deals with the calculation of the vapor–liquid equilibria (VLE) of nitriles and their mixtures by using the crossover soft-SAFT Equation of State (EoS). Both polar and associating interactions are taken into account in a single association term in the crossover soft-SAFT equation, while the crossover term allows for accurate calculations both far from and close to the critical point. Molecular parameters for acetonitrile, propionitrile and n-butyronitrile (C3H7CN) are regressed from experimental data. Their transferability is tested by the calculation of the VLE of heavier linear nitriles, namely, valeronitrile (C4H9CN) and hexanonitrile (C5H11CN), not included in the fitting procedure. Crossover soft-SAFT results are in excellent agreement with experimental data for the whole range of thermodynamic conditions investigated, proving the robustness of the approach. Parameters transferability has also been used to describe the isomers n-butyronitrile and i-butyronitrile. Finally, the nitriles soft-SAFT model is further tested in VLE calculation of mixtures with benzene, carbon tetrachloride and carbon dioxide, which proved to be satisfactory as well.  相似文献   

3.
The liquid–liquid equilibrium (LLE) data, including tie-lines and phase boundaries, were measured for the ternary systems of water + methanol + methyl oleate, water + methanol + methyl linoleate, glycerol + methanol + methyl oleate, and glycerol + methanol + methyl linoleate at temperatures from 298.2 K to 318.2 K under atmospheric pressure. All the LLE data follow the Othmer-Tobias equation. Each ternary system behaves type-I LLE. The areas of two-liquid coexistence region decrease with increasing temperature. The experimental data were applied to test the validity of the UNIFAC model and its modified versions, including UNIFAC-LLE and UNIFAC-Dortmund. The LLE data were also correlated with the NRTL and the UNIQUAC models. The UNIQUAC model yielded better results.  相似文献   

4.
In this paper, we derived the potential parameters for three toxic gases, hydrogen sulfide, phosgene and nitrous oxide, modeled by the effective Stockmayer potential model proposed by Gao et al. [Fluid Phase Equilib. 137 (1997) 87]. The vapor–liquid equilibria (VLE) of these substances have been extensively investigated over a wide range of temperatures by the Gibbs ensemble Monte Carlo (GEMC) technique. The simulated saturated densities and pressures are in good agreement with experimental data. The critical properties obtained by regression of the simulated data also agree well with the experimental values. The present work demonstrates that the effective Stockmayer potential can describe well the toxic gases concerned.  相似文献   

5.
Solid–liquid equilibria for binary mixtures of {methyl stearate (1) + biphenyl (2)}, {methyl stearate (1) + naphthalene (2)}, {methyl palmitate (1) + biphenyl (2)} and {methyl palmitate (1) + naphthalene (2)} were measured using differential scanning calorimeter. Simple eutectic behaviours for these systems were observed. The experimental results were correlated by means of the NRTL, Wilson, UNIQUAC and ideal models. The root-mean-square deviations of the solubility temperatures for all measured data vary from 0.5477 K (for UNIQUAC model) to 7.79 K; the deviations depend on the binary system studied and particular model used. The best solubility correlation was obtained with UNIQUAC model and this observation confirms previous results.  相似文献   

6.
《Fluid Phase Equilibria》1999,154(1):89-98
Isobaric vapor–liquid equilibrium data of ethanol(1)-triethyl orthoformate(2), benzene(1)-triethyl orthoformate(2) and ethanol(1)-benzene(2)-triethyl orthoformate(3) were measured at 101.3 kPa and under a wide range of temperatures (349–420 K), using the Rose–Williams still modified by the authors. The experimental data of binary systems were tested for thermodynamic consistency with the method of Fredenslund and coworkers and correlated satisfactorily with SRK equation and PR equation of state. The VLE data of ethanol(1)-benzene(2)-triethyl orthoformate(3) ternary system were tested with the method of McDermont–Ellis and were predicted with the parameters of SRK and PR equation of state obtained from binary systems.  相似文献   

7.
Solid–liquid equilibria for three binary mixtures of {n-eicosane (1) + methyl palmitate (2)}, {n-tetracosane (1) + methyl stearate (2)} and {n-octacosane (1) + methyl stearate (2)} were measured using differential scanning calorimeter. Simple eutectic behaviours for these systems were observed. The experimental results were correlated by means of the modified UNIFAC (Larsen and Gmehling versions), UNIQUAC and ideal models. The root-mean-square deviations of the solubility temperatures for all measured data vary from 0.21 K (for UNIQUAC model) to 1.07 K (for Ideal model) and depend on the particular model used. The best solubility correlation was obtained with UNIQUAC model.  相似文献   

8.
《Fluid Phase Equilibria》1999,154(2):223-239
Isothermal vapor–liquid equilibria (VLE) have been measured for bromochloromethane+tetrachloromethane or benzene at 298.15 K and 313.15 K, and for 1-bromo-2-chloroethane+tetrachloromethane or benzene at 313.15 K. Bromochloromethane+tetrachloromethane shows azeotropic behaviour in the temperature range covered. These experimental results, along with our previous ones on excess enthalpies, are interpreted with two group contribution models: DISQUAC (DISpersive-QUAsiChemical) and modified (Dortmund) UNIFAC (UNIquac Functional group Activity Coefficients).  相似文献   

9.
《Fluid Phase Equilibria》2001,178(1-2):209-223
Diphenylmethane was found to be a potential entrainer for separating the closely boiling mixtures of 2-methoxyphenol+1,2-dimethoxybenzene via extractive distillation. To gain insight into the capability of this auxiliary agent, isothermal vapor–liquid equilibrium data were measured for the binary and the ternary mixtures containing 2-methoxyphenol, 1,2-dimethoxybenzene, and diphenylmethane at temperatures from 433.15 to 463.15 K. All the binary data passed thermodynamic consistency tests. However, there exhibits a large discrepancy between the experimental values and the predicted results from the UNIFAC model. The new data were correlated with the Wilson, the NRTL, and the UNIQUAC models, respectively. The model parameters determined from the binary data were applied to predict the phase equilibrium behavior of the ternary system.  相似文献   

10.
The phase diagram of 1,4-dibromobenzene (DBB) with pyrogallol (PG) shows the formation of a monotectic and a eutectic alloys at 0.12 and 0.99?mol fractions of DBB, respectively. The phase equilibrium shows the large miscibility gap region with the upper consolute temperature 159.0?°C at 0.55?mol fraction of DBB. Growth kinetics of pure compounds and their monotectic and eutectic at different undercooling (??T) obey Hillig?CTurnbull??s equation: v?=?u (??T) n . Thermodynamic parameters such as enthalpy of mixing, entropy of fusion, interfacial energy, roughness parameters and excess thermodynamic functions were computed based on enthalpy of fusion values obtained from DSC studies. The Cahn wetting condition is applicable for monotectic alloy. The optical microphotographs of binary alloys show lamellar and dendritic features.  相似文献   

11.
《Fluid Phase Equilibria》2002,193(1-2):109-121
Isothermal vapor–liquid equilibrium (VLE) data at 353.15 K and excess molar volumes (VE) at 298.15 K are reported for the binary systems of ethyl acetate (EA)+cyclohexane and EA+n-hexane and also for the ternary systems of EA+cyclohexane+2-methyl pyrazine (2MP) and EA+n-hexane+2MP. The experimental binary VLE data were correlated with common gE model equations. The correlated Wilson parameters of the constituent binary systems were used to calculate the phase behavior of the ternary mixtures. The calculated ternary VLE data using Wilson parameters were compared with experimental ternary data. The experimental excess molar volumes were correlated with the Redlich–Kister equation for the binary mixtures, and Cibulka’s equation for the ternary mixtures.  相似文献   

12.
The boiling temperature and the corresponding vapor phase composition in the existence domain of liquid solutions were calculated from the partial pressures of saturated vapor of the components and lead selenide over liquid melts in the lead–selenium system. The phase diagram was complemented with the liquid–vapor phase transition at atmospheric pressure and in vacuum of 100 Pa, which allowed us to judge the behavior of the components during the distillation separation.  相似文献   

13.
《Fluid Phase Equilibria》2004,224(1):111-118
The statistical associating fluid theory (SAFT) equation of state is employed for the correlation and prediction of vapor–liquid equilibrium (VLE) of eighteen binary mixtures. These include water with methane, ethane, propane, butane, propylene, carbon dioxide, methanol, ethanol and ethylene glycol (EG), ethanol with ethane, propane, butane and propylene, methanol with methane, ethane and carbon dioxide and finally EG with methane and ethane. Moreover, vapor–liquid equilibrium for nine ternary systems was predicted. The systems are water/ethanol/alkane (ethane, propane, butane), water/ethanol/propylene, water/methanol/carbon dioxide, water/methanol/methane, water/methanol/ethane, water/EG/methane and water/EG/ethane. The results were found to be in satisfactory agreement with the experimental data except for the water/methanol/methane system for which the root mean square deviations for pressure were 60–68% when the methanol concentration in the liquid phase was 60 wt.%.  相似文献   

14.
A new experimental apparatus for performing simultaneous determination of high-pressure vapor–liquid equilibria (VLE) and saturated densities was developed in this work. The experimental methodology was verified by measuring these properties for the carbon dioxide + 1-propanol and carbon dioxide + 2-propanol systems from 313 to 363 K. The apparatus is based on the static-analytic method for VLE determinations and was slightly modified by coupling a vibrating U-tube densitometer to obtain saturated densities for both vapor and liquid phases. VLE measurements agreed with previous literature data and were correlated with the Peng–Robinson equation of state coupled to the Wong–Sandler mixing rules. Saturation densities at temperatures above 313 K have not been published up to now.  相似文献   

15.

The boiling points of solutions of three-component systems formed by propanol-2 and propanoic acid esters are measured at different pressures by means of ebulliometry. The coefficients of the activity of the solutions’ components are measured using Wilson and nonrandom two-liquid (NRTL) equations. The results from calculations are in line with the experimental data.

  相似文献   

16.
《Fluid Phase Equilibria》2003,204(1):75-84
New correlations have been developed to estimate saturated vapor pressures of eight HFC binary refrigerant mixtures, namely HFC125/134a, HFC125/143a, HFC134a/236fa, HFC134a/245fa, HFC143a/134a, HFC143a/152a, HFC32/125, and HFC32/134a. In this prediction method, the saturated vapor pressures of mixtures can be calculated by the thermoproperties of pure components, without any adjustable parameters determined by experimental data. The overall average absolute deviation of pressures is <1% compared with experimental data.  相似文献   

17.
A horizontal diamond attenuated total reflection (ATR) element has been incorporated in a flow-through cell with low dead volume and used for on-line mid-IR detection in high-performance liquid chromatography. The chemical inertness of the ATR element permitted the use of a strongly acidic mobile phase in the isocratic separation. The hyphenation was used for the analysis of organic acids, sugars and alcohols in red wine. In the case of co-eluting analytes multivariate curve resolution-alternating least squares (MCR-ALS) was successfully employed for quantitative analysis.  相似文献   

18.
19.
《Fluid Phase Equilibria》1999,157(2):299-307
Isobaric vapor–liquid equilibrium data have been determined at 101.33 kPa for the binary mixtures of benzene-tetraethylene glycol (TeEG), toluene-TeEG and o-xylene-TeEG. The vapor-phase fugacity coefficients were calculated from the virial equation. The thermodynamic consistency of the data has been tested via Herington analysis. The binary parameters for four activity coefficient models (van Laar, Wilson, NRTL and UNIQUAC) have been fitted with the experimental data. A comparison of model performances has been made by using the criterion of root mean square deviations in boiling point and vapor-phase composition.  相似文献   

20.
Zeck, S. and Knapp, H., 1986. Vapor—liquid and vapor—liquid—liquid phase equilibria of binary and ternary systems of nitrogen, ethene and methanol: experiment and data evaluation. Fluid Phase Equilibria, 26: 37–58.VLE and VLLE of three binary and one ternary system containing the components N2, C2H4 and CH3OH are investigated in a high-pressure phase equilibrium apparatus with vapor recirculation at temperatures 240 < T < 298 K and pressures 4 < p < 100 bar. Immiscibilities in the liquid phase are observed in the binary system C2H4CH3OH with a lower critical end point and in the ternary system N2C2H4CH3OH.The experimental results are reported and compared with the results of other investigators and of available correlations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号