首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Dos Santos LB  Abate G  Masini JC 《Talanta》2005,68(2):165-170
Square wave voltammetry automated by sequential injection analysis was applied to determine the Freundlich adsorption coefficients for the adsorption of atrazine onto a clay rich soil. The detection limit in soil extracts was between 0.18 and 0.48 μmol L−1, depending on the medium used to prepare the extracts (0.010 mol L−1 KCl, CaCl2 or HNO3 and 0.0050 mol L−1 H2SO4), all of them conditioned in 40 mmol L−1 Britton-Robinson buffer at pH 2.0 in presence of 0.25 mol L−1 NaNO3. Also in soil extracts the linear dynamic range was between 1.16 and 18.5 μmol L−1 (0.25-4.0 μg mL−1), with a sampling frequency of 190 h−1. The Kf Freundlich adsorption coefficient was 3.8 ± 0.2 μmol1−1/n Ln kg−1 in medium of 0.010 mol L−1 KCl or CaCl2, but increased to 7.7 ± 0.1 and 9.0 ± 0.3 μmol1−1/n Ln kg−1 in 0.010 mol L−1 HNO3 and 0.0050 mol L−1 H2SO4, respectively. The increase of Kf was related to the decrease of pH from 6.4-6.7 in KCl and CaCl2 to 3.7-4.0 in presence of HNO3 or H2SO4, which favors protonation of atrazine, facilitating electrostatic attractions with negative charges of the clay components of the soil. The 1/n parameters were between 0.76 and 0.86, indicating that the isotherms are not linear, suggesting the occurrence of chemisorption at specific adsorption sites. No statistically significant differences were observed in comparison to the adsorption coefficients obtained by HPLC. The advantage of the proposed SI-SWV method is the great saving of reagent because it does not use organic solvent as in the case of HPLC (50% (v/v) acetonitrile in the mobile phase). Additionally the start up of SI-SWV is immediate (no column conditioning necessary) and the analysis time is only 19 s.  相似文献   

3.
A hyphenated ion-pair (tetrabutylammonium chloride—TBACl) reversed phase (C18) HPLC-ICP-MS method (High Performance Liquid Chromatography Inductively Coupled Plasma Mass Spectroscopy) for anionic Rh(III) aqua chlorido-complexes present in an HCl matrix has been developed. Under optimum chromatographic conditions it was possible to separate and quantify cationic Rh(III) complexes (eluted as a single band), [RhCl3(H2O)3], cis-[RhCl4(H2O)2], trans-[RhCl4(H2O)2] and [RhCln(H2O)6−n]3−n (n = 5, 6) species. The [RhCln(H2O)6−n]3−n (n = 5, 6) complex anions eluted as a single band due to the relatively fast aquation of [RhCl6]3− in a 0.1 mol L−1 TBACl ionic strength mobile phase matrix. Moreover, the calculated t1/2 of 1.3 min for [RhCl6]3− aquation at 0.1 mol kg−1 HCl ionic strength is significantly lower than the reported t1/2 of 6.3 min at 4.0 mol kg−1 HClO4 ionic strength. Ionic strength or the activity of water in this context is a key parameter that determines whether [RhCln(H2O)6−n]3−n (n = 5, 6) species can be chromatographically separated. In addition, aquation/anation rate constants were determined for [RhCln(H2O)6−n]3−n (n = 3-6) complexes at low ionic strength (0.1 mol kg−1 HCl) by means of spectrophotometry and independently with the developed ion-pair HPLC-ICP-MS technique for species assignment validation. The Rh(III) samples that was equilibrated in differing HCl concentrations for 2.8 years at 298 K was analyzed with the ion-pair HPLC method. This analysis yielded a partial Rh(III) aqua chlorido-complex species distribution diagram as a function of HCl concentration. For the first time the distribution of the cis- and trans-[RhCl4(H2O)2] stereoisomers have been obtained. Furthermore, it was found that relatively large amounts of ‘highly’ aquated [RhCln(H2O)6−n]3−n (n = 0-4) species persist in up to 2.8 mol L−1 HCl and in 1.0 mol L−1 HCl the abundance of the [RhCl5(H2O)]2− species is only 8-10% of the total, far from the 70-80% as previously proposed. A 95% abundance of the [RhCl6]3− complex anion occurs only when the HCl concentration is above 6 mol L−1. The detection limit for a Rh(III) species eluted from the column is below 0.147 mg L−1.  相似文献   

4.
Protonation constants of carbonate were determined in tetramethylammonium chloride (Me4NClaq 0.1 ≤ I/mol kg−1 ≤ 4) and tetraethylammonium iodide (Et4NIaq 0.1 ≤ I/mol kg−1 ≤ 1) by potentiometric ([H+]-glass electrode) measurements. Dependence of protonation constants on ionic strength was taken into account by modified specific ion interaction theory (SIT) and by Pitzer models. Literature data on the protonation of carbonate in NaClaq (0.1 ≤ I/mol kg−1 ≤ 6) were also critically analysed. Both protonation constants of carbonate follow the trend Et4NI > Me4NCl > NaCl. An ion pair formation model designed to take into account the different protonation behaviours of carbonate in different supporting electrolytes was also evaluated.  相似文献   

5.
The electromotive forces of a symmetrical concentration cell with transference, Ag; AgCl|LaCl3 (m*):LaCl3 (m)|AgCl; Ag, were measured over the concentration range from 8.762 × 10−4 mol kg−1 to 6.788 × 10−2 mol kg−1 at 298.15 K to obtain the mean activity coefficients of LaCl3. The mean activity coefficient for reference solution at 298.15 K and the ion size parameter for LaCl3 in the extended Debye–Hückel equation are evaluated by using an approach extrapolating concentration to unlimited dilution. A modified Debye–Hückel equation with new parameters has been established for the studied concentration range. A comparison is done of the thermodynamic data of LaCl3 that are determined by this experiment with those reported by previous literatures, and evaluated by some models.  相似文献   

6.
A new isopiestic apparatus has been designed and constructed following several criteria. It consists mainly of several small sample cups for holding small quantities of reference standard solutions, and a big sample cup for a bigger quantity of a test solution. Using this apparatus, experiments on NaOH solutions have been performed. The experimental procedure, the consistency among the samples in equilibrium, the equilibration process, and the determined osmotic coefficients of NaOH solutions are discussed. The apparatus is found to ensure a consistent temperature among the samples in equilibrium, meeting the experimental requirements for samples of molalities less than 0.05 mol · kg−1. Inside the apparatus, the temperature can reach the desired uniform temperature within less than 0.5 d. In the experiments, the equilibration process is essentially determined by changes in the reference standard solutions in the small cups. Thus the apparatus is not only reliable and stable, but is also suitable for experiments on solutions of viscous, complex and unstable solutes. The equilibration time of the experiments is fast, which is practical for samples of molalities less than 0.05 mol · kg−1. Moreover, with the new apparatus it is easy to determine the end point of the equilibration.  相似文献   

7.
The enthalpies of solution of l-histidine in water at 288.15-318.15 K and 0.003-0.15 mol kg−1 were measured. The enthalpies of solution were found to be independent of the solute molality up to ∼0.1 mol kg−1. Standard enthalpies and heat capacities of solution were computed. Free energies and entropies of solution have been estimated in the temperature range studied using literature solubility data and the results of the present study. The temperature increase was found to result in a pronounced rise of the l-histidine solubility due to the significant increase of the TΔS values. The characteristic temperatures for the thermodynamic properties of histidine aqueous solutions were estimated.  相似文献   

8.
The apparent molar volumes Vφ of glycine, alanine, valine, leucine, and lysine have been determined in aqueous solutions of 0.05, 0.5, 1.0 mol · kg−1 sodium dodecyl sulfate (SDS) and 1.0 mol · kg−1 cetyltrimethylammonium bromide (CTAB) by density measurements at T=298.15 K. The apparent molar volumes have also been determined for diglycine and triglycine in 1 mol · kg−1 SDS and CTAB solutions. These data have been used to calculate the infinite dilution apparent molar volumes V20 for the amino acids and peptides in aqueous SDS and CTAB and the standard partial molar volumes of transfer (ΔtrV2,m0) of the amino acids and peptides to these aqueous surfactant solutions. The linear correlation of V20 for a homologous series of amino acids has been utilized to calculate the contribution of the charged end groups (NH3+, COO), CH2 group and other alkyl chains of the amino acids to V20. The results on the partial molar volumes of transfer from water to aqueous SDS and CTAB have been interpreted in terms of ion–ion, ion–polar and hydrophobic–hydrophobic group interactions. The volume of transfer data suggests that ion–ion or ion–hydrophilic group interactions of the amino acids and peptides are stronger with SDS compared to those with CTAB. Comparison of the hydration numbers of amino acids calculated in the present studies with those in other solvents from literature shows that these numbers are almost the same at 1 mol · kg−1 level of the cosolvent/cosolute. Increasing molality of the cosolvent/cosolute beyond 1 mol · kg−1 lowers the hydration number of the amino acids due to increased interactions with the solvent and reduced electrostriction.  相似文献   

9.
A multicommuted flow system is proposed for spectrophotometric determination of hydrosoluble vitamins (ascorbic acid, thiamine, riboflavine and pyridoxine) in pharmaceutical preparations. The flow manifold was designed with computer-controlled three-way solenoid valves for independent handling of sample and reagent solutions and a multi-channel spectrophotometer was employed for signal measurements. Periodic re-calibration as well as the standard addition method was implemented by using a single reference solution. Linear responses (r=0.999) were obtained for 0.500-10.0 mg l−1 ascorbic acid, 2.00-50.0 mg l−1 thiamine, 5.00-50.0 mg l−1 riboflavine and 0.500-8.00 mg l−1 pyridoxine. Detection limits were estimated as 0.08 mg l−1 (0.5 μmol l−1) ascorbic acid, 0.8 mg l−1 (2 μmol l−1) thiamine, 0.2 mg l−1 (0.5 μmol l−1) riboflavine and 0.1 mg l−1 (0.9 μmol l−1) pyridoxine at 99.7% confidence level. A mean sampling rate of 60 determinations per hour was achieved and coefficients of variation of 1% (n=20) were estimated for all species. The mean reagent consumption was 25-fold lower in relation to flow-based procedures with continuous reagent addition. Average recoveries between 95.6 and 100% were obtained for commercial pharmaceutical preparations. Results agreed with those obtained by reference methods at 95% confidence level. The flow system is suitable for application in quality control processes and in dissolution studies of vitamin tablets.  相似文献   

10.
A flow injection analysis (FIA) method using on-line separation and preconcentration with a novel metal scavenger beads, QuadraSil™ TA, has been developed for the ICP-OES determination of traces of palladium. QuadraSil TA contains diethylenetriamine as a functional group on spherical silica beads and shows the highest selectivity for Pd(II) at pH 1 (0.1 mol l−1 hydrochloric acid) solution. An aliquot of the sample solution prepared as 0.1 mol l−1 in hydrochloric acid was passed through the QuadraSil TA column. After washing the column with the carrier solution, the Pd(II) retained on the column was eluted with 0.05 mol l−1 thiourea solution and the eluate was directly introduced into an ICP-OES. The proposed method was successfully applied to the determination of traces of palladium in JSd-2 stream sediment certified reference material [0.019 ± 0.001 μg g−1 (n = 3); provisional value: 0.0212 μg g−1] and SRM 2556 used auto catalyst certified reference material [315 ± 4 μg g−1 (n = 4); certified value: 326 μg g−1]. The detection limit (3σ) of 0.28 ng ml−1 was obtained for 5 ml of sample solution. The sample throughputs for 5 ml and 100 μl of the sample solutions were 10 and 15 h−1, respectively.  相似文献   

11.
This paper describes a simple and highly selective method for the separation, preconcentration and spectrophotometric determination of extremely low concentration of mercury. The method is based on the flotation of an ion-associate of HgI42− and ferroin between aqueous and n-heptane interface at pH 5. The ion-associate was then separated and treated with ammonia and dithizone solutions to extract only the mercury chelate with CH2Cl2. The measurement is feasible when the volume of the water sample containing Hg(II) was varied over 50-800 ml. Beer's law was obeyed over the concentration range of 8 × 10−9 to 1.6 × 10−7 mol l−1 with an apparent molar absorptivity of 6.53 × 106 l mol−1 cm−1 for a 500 ml aliquot of the water sample. The detection limit (n = 7) was 5.0 × 10−10 mol l−1 and the R.S.D. (n = 5) for 8.0 × 10−7 mol l−1 of Hg(II) was 3.7%. A notable advantage of the method is that the determination of Hg(II) is free from the interference of almost all cations and anions found in the environmental and waste water samples. The determination of Hg(II) in tap, synthetic sea water and human hair samples was carried out by the present method and cold vapor atomic absorption spectrometry (CV-AAS). The results were satisfactorily comparable so that the applicability of the proposed method was confirmed to the real samples.  相似文献   

12.
A simple and sensitive spectrophotometric flow method for determination of low concentrations of the flotation collector O-ethyldithiocarbonate (ethyl xanthate, CH3CH2-O-CS2) in solutions is described. The method is based on ethyl xanthate detection at 301 nm in medium of NaOH 50 mmol L−1. By injection of 200 μL of sample, the analytical method shows linear response for the ethyl xanthate concentration from 0.5 up to 500 μmol L−1. Successive injections of 4 μmol L−1 ethyl xanthate (n = 23) show a coefficient of variation lower than 0.6%, denoting high repeatability. The detection limit is 0.3 μmol L−1. At a flow rate of 2.0 mL min−1, a frequency of 120 injections/h of ethyl xanthate can be attained. By introduction of a tangential dialysis cell in the FIA system, the manual sample filtration step with 0.22 μm filter was eliminated and the residual interference of suspended material, was completely overcome even for unfiltered sludge suspension samples, an important advantage that compensates for the frequency reduction to 25 injections/h elevation and detection limit elevation to 2 μmol L−1, still outreaching for many applications. Potential applications of the method embrace the at line determination of ethyl xanthate in the ore processing industry, control of the concentration at its optimal level during the flotation process, as well as monitoring of residues in the effluents.  相似文献   

13.
A novel method for the simultaneous determination of 1-hydroxypyrene (1-OHP), β-naphthol (β-NAP) and 9-hydroxyphenanthrene (9-OHPe) in human urine has been established by using synchronous fluorescence spectrometry. It was based on the fact that synchronous fluorescence spectrometry can resolve the broad-band overlapping of conventional fluorescence spectra, which arise from their similar molecular structures. Only one single scan is needed for quantitative determination of three compounds simultaneously when Δλ = 15 nm is chosen. The signals detected at these three wavelengths, 369.6, 330.0 and 358.0 nm, vary linearly when the concentration of 1-OHP, β-NAP and 9-OHPe is in the range of 2.16 × 10−8-1.50 × 10−5 mol L−1, 1.20 × 10−7-1.10 × 10−5 mol L−1 and 1.07 × 10−7-3.50 × 10−5 mol L−1, respectively. The correlation coefficients for the standard calibration graphs were 0.994, 0.999 and 0.997 (n = 7) for 1-OHP, β-NAP and 9-OHPe, respectively. The limits of detection (LOD) for 1-OHP, β-NAP and 9-OHPe were 6.47 × 10−9 mol L−1, 3.60 × 10−8 mol L−1 and 3.02 × 10−8 mol L−1with relative standard deviations (R.S.D.) of 4.70-6.40%, 2.80-4.20%, 3.10-4.90% (n = 6), respectively. The method described here had been applied to determine traces of 1-OHP, β-NAP and 9-OHPe in human urine, and the obtained results were in good agreement with those obtained by the HPLC method. In addition, the interaction modes between β-cyclodextrin (β-CD) and 1-OHP, β-NAP or 9-OHPe, as well as the mechanism of the fluorescence enhancement were also discussed.  相似文献   

14.
The enthalpies of solution of N-acetyl-N′-methylglycinamide, N-acetyl-N′-methyl-l-α-alaninamide, N-acetyl-N′-methyl-l-α-leucinamide and N-acetyl-N′-methyl-l-α-serinamide have been measured in water and in aqueous urea solutions with molalities from 0.25 to 3.0 mol kg−1 at 298.15 K. From these data the standard dissolution enthalpies of amides in aqueous urea solutions have been determined. The results have been treated according to McMillan-Mayer's theory in order to obtain the enthalpic coefficients of the interactions between amino acid derivatives and urea molecules. The obtained parameters were compared with the hydrophobic scale for the amino acid side chains.  相似文献   

15.
The electrochemistry of metronidazole, 1-(hydroxyethyl)-2-methyl-5-nitroimidazole, was investigated at a carbon fiber microdisk electrode in pH 9 Britton Robinson buffer. Under these conditions, the reduction of metronidazole is controlled by both mass transport to the microdisk and adsorption with an equilibrium constant of 4 × 103 mol−1 dm3 and a saturation coverage of 0.88 × 10−8 mol cm−2. The adsorption and accumulation of metronidazole on the surface of the carbon fiber allows its determination at low concentrations by square wave adsorptive stripping voltammetry. A detection limit for metronidazole of 5 × 10−7 mol dm−3 and a R.S.D. of 3.7% at 1 × 10−6 mol dm−3 (n = 4) were obtained with a two electrode system with no stirring during the accumulation step. Based on this method, a simple procedure for the determination of metronidazole in urine is described which requires no pre-treatment of the sample before analysis.  相似文献   

16.
A liquid chromatographic (LC) atmospheric pressure chemical ionization mass spectrometric (MS) method is described for determining imidacloprid, carbendazim, methiocarb and hexythiazox in peaches and nectarines. The samples were extracted with ethyl acetate and anhydrous sodium sulfate. Recoveries yield for spiking samples were ranged from 64±9% (R.S.D) for carbendazim to 108±14% (R.S.D.) for hexythiazox at the concentration of 0.1 mg kg−1 (n=5). The correlation coefficients were greater than 0.998 over the range between 0.02 and 2 mg kg−1. The limits of quantitation (LOQ) were 0.02 mg kg−1 for all the pesticides. The applicability of the method to detect and quantify imidacloprid, carbendazim, methiocarb and hexythiazox was demonstrated successfully in 159 peach and nectarine samples obtained from an agricultural co-operative. The calculation of the estimated daily intakes (EDI) from these data showed that contribution of fruits to dietary intakes were much lower than acceptable daily intakes (ADI) proposed by international agencies.  相似文献   

17.
The electromotive force of the cell containing two ion-selective electrodes (ISE), K-ISE|KCl(m), PEG 4000(Y), H2O(100 − Y)|Cl-ISE has been measured at temperatures of 288.15, 298.15, and 308.15 K as a function of the weight percentage Y of PEG 4000 in a mixed solvent. Y was varied between 0 and 25 wt.% in five-unit steps and the molality of the electrolyte (m) was between ca. 0.05 mol kg−1 and almost saturation. The values of the standard electromotive force were calculated using routine methods of extrapolation together with extended Debye-Hückel and Pitzer equations. The results obtained produced good internal consistency for all the temperatures studied. Once the standard electromotive force was determined, mean ionic activity coefficients for KCl, Gibbs energy of transfer from the water to PEG 4000 + water mixtures, interaction parameters (gEN, hEN, sEN, cp,EN), salting constants, and the KCl primary hydration number were estimated and comparatively discussed in terms of a model of structural and electrostatic interactions with those of the LiCl and NaCl previously obtained in similar mixtures.  相似文献   

18.
Amir Waseem 《Talanta》2007,71(1):56-61
A flow injection (FI) method is reported for the determination of thyroxine based on its enhancement of chemiluminescence (CL) from the Ru(bpy)33+-NADH system. The calibration graph was linear over the range 2.0-10 × 10−8 mol L−1 (r2 = 0.9989) with relative standard deviations (R.S.D.) in the range 2.0-4.5% (n = 4). The limit of detection (3σ blank) was 1.0 × 10−9 mol L−1 with sample throughput of 120 h−1. The effect of some organic compounds, anions and cations were studied for l-thyroxine determination. The method was applied to pharmaceutical preparations and the results obtained were in reasonable agreement with the amount labeled. The method was statistically compared with the results obtained by RIA; no significant disagreement at 95% confidence limit was observed. A calibration graph of NADH over the range 1.3 × 10−8-1.3 × 10−6 mol L−1 was also established (r2 = 0.9992) with R.S.D. in the range1.0-3.5% (n = 4). The limit of detection (3σ) was 1.0 × 10−10 mol L−1 NADH.  相似文献   

19.
Brassica raparapa group is widely distributed and consumed in northwestern Spain. The consumption of Brassica vegetables has been related to human health due to their phytochemicals, such as glucosinolates and phenolic compounds that induce a variety of physiological functions including antioxidant activity, enzymes regulation and apoptosis control and the cell cycle. For first time in Brassica crops, intact glucosinolates and phenolic compounds were simultaneously identified and characterized. Twelve intact glucosinolates, belonging to the three chemical classes, and more than 30 phenolic compounds were found in B. rapa leaves and young shoots (turnip greens and turnip tops) by LC–UV photodiode array detection (PAD)–electrospray ionization (ESI). The main naturally occurring phenolic compounds identified were flavonoids and derivatives of hydroxycinnamic acids. The majority of the flavonoids were kaempferol, quercetin and isorhamnetin glycosylated and acylated with different hydroxycinnamic acids. Quantification of the main compounds by HPLC-PAD showed significant differences for most of compounds between plant organs. Total glucosinolate content value was 26.84 μmol g−1 dw for turnip greens and 29.11 μmol g−1 dw for turnip tops; gluconapin being the predominant glucosinolate (23.2 μmol g−1 dw). Phenolic compounds were higher in turnip greens 51.71 μmol g−1 dw than in turnip tops 38.99 μmol g−1 dw, in which flavonols were always the major compounds.  相似文献   

20.
Yu Y  Lin LR  Yang KB  Zhong X  Huang RB  Zheng LS 《Talanta》2006,69(1):103-106
A novel and simple fluorophore, p-dimethylaminobenzaldehyde thiosemicarbazone (DMABTS), was prepared in order to find available fluorescent chemosensor for mercuric ion in aquesous solution. DMABTS emitted fluorescence at 448 nm in aqueous solution and its fluorescence intensity was completely quenched upon interaction with Hg2+ ions, which should be attributed to the 1:1 complex formation between DMABTS and Hg2+. The binding constant of the complex was determined as 7.48 × 106 mol l−1. The linear range of quantitative detection of 0 to 5.77 × 10−6 mol l−1 and the detection limit of 7.7 × 10−7 mol l−1 for Hg2+ in the 6.3 × 10−6 mol l−1 DMABTS aqueous solution were obtained from a calibration curve. The coexistence of several transition metal ions and anions did interfere the fluorometric titration of Hg2+ ion by less than 4% in the emission change.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号