首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tie-line data for ternary system of (water + 1-propanol + diisopropyl ether (DIPE)) were determined at T = (298.2, 308.2 and 313.2) K under atmospheric conditions. The ternary system exhibited type-I LLE behavior, as (DIPE + water) is the only liquid pair that is partially miscible. The experimental data for this system were predicted with the UNIFAC model with a root mean square deviation of 2.64%. The reliability of the experimental tie-line data was determined through the Othmer–Tobias and Hand plots. Distribution coefficients and separation factors were measured to evaluate the extracting capability of the solvents. The influence of temperature effect on the equilibrium characteristics and separation factor was found to be significant at the temperatures studied.  相似文献   

2.
Consistent vapour–liquid equilibrium data for the ternary systems diisopropyl ether + isopropyl alcohol + 2,2,4-trimethylpentane and diisopropyl ether + isopropyl alcohol + n-heptane are reported at 101.3 kPa. The vapour–liquid equilibrium data have been correlated by Wilson, NRTL and UNIQUAC equations. The ternary systems do not present ternary azeotropes.  相似文献   

3.
Liquid–liquid equilibrium (LLE) data were measured for three quaternary systems containing sulfolane, nonane + undecane + benzene + sulfolane, nonane + undecane + toluene + sulfolane and nonane + undecane + m-xylene + sulfolane, at T = 298.15 and 313.15 K and ambient pressure. The experimental quaternary liquid–liquid equilibrium data have been satisfactorily represented by using NRTL and UNIFAC-LLE models for the activity coefficient. The calculated compositions based on the NRTL model were found to in a better agreement with the experiment than those based on the UNIFAC-LLE model.  相似文献   

4.
Isobaric vapor–liquid equilibrium (VLE) data of the reactive quaternary system ethanol (1) + water (2) + ethyl lactate (3) + lactic acid (4) have been determined experimentally. Additionally, the reaction equilibrium constant was calculated for each VLE experimental data. The experimental VLE data were correlated using the UNIQUAC equation to describe the chemical and phase equilibria simultaneously. For some of the non-reactive binary systems, UNIQUAC binary interaction parameters were obtained from the literature. The rest of the binary UNIQUAC parameters were obtained by correlating the experimental quaternary VLE data obtained in this work. A maximum pressure azeotrope at high water concentration for the binary reactive system ethyl lactate + water has been calculated.  相似文献   

5.
Consistent vapour–liquid equilibrium data at 101.3 kPa have been determined for the ternary system dipropyl ether + 1-propyl alcohol + 2-ethoxyethanol and two constituent binary systems: dipropyl ether + 2-ethoxyethanol and 1-propyl alcohol + 2-ethoxyethanol. The dipropyl ether + 2-ethoxyethanol system shows positive deviations from ideal behaviour and 1-propyl alcohol + 2-ethoxyethanol system exhibits no deviation from ideal behaviour. The activity coefficients and the boiling points were correlated with their compositions by the Wilson, NRTL and UNIQUAC equations. It is shown that the models allow a very good prediction of the phase equilibria of the ternary system using the pertinent parameters of the binary systems. The parameters obtained from binary data were utilized to predict the phase behaviour of the ternary system. The results showed a good agreement with the experimental values. Moreover, the entrainer capabilities of 2-ethoxyethanol were compared with 1-pentanol, butyl propionate and N,N-dimethylformamide, concluding that N,N-dimethylformamide is the best entrainer.  相似文献   

6.
Liquid–liquid equilibrium (LLE) data of the solubility (binodal) curves and tie-line end compositions were examined for mixtures of {(water (1) + levulinic acid (2) + dimethyl succinate or dimethyl glutarate or dimethyl adipate (3)} at 298.15 K and 101.3 ± 0.7 kPa. The reliability of the experimental tie-line data was confirmed by using the Othmer–Tobias correlation. The LLE data of the ternary systems were predicted by UNIFAC method. The LLE data were correlated fairly well with UNIQUAC and NRTL models, indicating the reliability of the UNIQUAC and NRTL equations for these ternary systems. The best results were achieved with the NRTL equation, using non-randomness parameter (α = 0.3) for the correlation. Distribution coefficients and separation factors were measured to evaluate the extracting capability of the solvents.  相似文献   

7.
(Liquid-liquid) equilibrium (LLE) data of the solubility curves and tie-line compositions have been determined for mixtures of (water + 3-hydroxy-2-butanone + ethyl ethanoate) at 298.15 K, 308.15 K and 318.15 K and 101.3 kPa. Distribution coefficients and separation factors have been evaluated for the immiscibility region. The reliability of the experimental tie-lines has been confirmed by using Othmer-Tobias correlation. The LLE data of the ternary systems have been predicted by UNIFAC method.  相似文献   

8.
Isobaric vapor–liquid equilibria were measured for three binary systems of water + propyleneglycol monomethyl ether (PGME), water + propyleneglycol monomethyl ether acetate (PGMEA), and PGME + PGMEA at 93.3, 53.3, 26.7 kPa. The equipment used was a modified Rogalski-Malanoski equilibrium still and an ebulliometer. The NRTL equation correlated the experimental binary data with good accuracy.  相似文献   

9.
Liquid-liquid equilibrium (LLE) data of the solubility (binodal) curves and tie-line end compositions were examined for mixtures of {(water (1) + butyric acid (2) + diethyl succinate or diethyl glutarate or diethyl adipate (3)} at 298.2 K and 101.3 ± 0.7 kPa. The relative mutual solubility of butyric acid is higher in the diethyl succinate or diethyl glutarate or diethyl adipate layers than water layers. The consistency of the experimental tie-lines was determined through the Othmer-Tobias correlation equation. The LLE data were correlated with NRTL model, indicating the reliability of the NRTL equations for these ternary systems. The best results were achieved with the NRTL equation, using non-randomness parameter (α = 0.3) for the correlation. Distribution coefficients and separation factors were measured to evaluate the extracting capability of the solvents.  相似文献   

10.
Tie line data of the ternary system {methanol + isooctane + cyclohexane} were obtained at T = 303.15 K. A quaternary system containing these three compounds and benzene was also studied at the same temperature, while data for {methanol + benzene + cyclohexane} and {methanol + benzene + isooctane} were taken from literature. In order to obtain the binodal surface of the quaternary system, four quaternary sectional planes with several cyclohexane/isooctane ratios were studied. The distribution of benzene between both phases was also analysed. Ternary experimental results were correlated with the UNIQUAC and NRTL equations and compared with predictions using the UNIFAC group contribution method.  相似文献   

11.
Isothermal vapor–liquid equilibrium data determined by the static method at 303.15 K are reported for the binary systems propyl vinyl ether + 1-propanol, 1-propanol + 2,2,4-trimethylpentane and propyl vinyl ether + 2,2,4-trimethylpentane and also for the ternary system propyl vinyl ether + 1-propanol + 2,2,4-trimethyl-pentane. Additionally, new excess volume data are reported for the same systems at 298.15 K. The experimental binary and ternary vapor–liquid equilibrium data were correlated with different GE models and excess molar volume data were correlated with the Redlich–Kister equation for the binary systems and the Cibulka equation for the ternary system, respectively.  相似文献   

12.
Experimental (liquid + liquid) equilibria involving ionic liquids {1,3-dimethylimidazolium methyl sulfate (MMIM MeSO4)}, {2-propanol + ethyl acetate + 1-butyl-3-methylimidazolium hexafluorophosphate (BMIM PF6)} and {2-propanol + ethyl acetate + 1-hexyl-3-methylimidazolium hexafluorophosphate (HMIM PF6)} were carried out to separate the azeotropic mixture ethyl acetate and 2-propanol. Selectivity and distribution ratio values, derived from the tie-lines data, were presented in order to analyze the best separation solvent in a liquid extraction process. Experimental (liquid + liquid) equilibria data were compared with the correlated values obtained by means of the NRTL, Othmer-Tobias and Hand equations. These equations were verified to accurately correlate the experimental data.  相似文献   

13.
(Liquid + liquid) equilibria and tie lines for the ternary systems of (water + phosphoric acid + 1-butanol) and (water + phosphoric acid + butyl acetate) were measured at T = 308.2 K. The experimental ternary (liquid + liquid) equilibrium data were correlated with the UNIQUAC model. The reliability of the experimental tie lines was confirmed using Othmer-Tobias correlation. The average root-mean-square deviation (RMSD) values of (water + phosphoric acid + 1-butanol) and (water + phosphoric acid + butyl acetate) systems were 2.17% and 2.16%, respectively. Distribution coefficients and separation factors were measured to evaluate the extracting capability of the solvents. The results show that butyl acetate may be considered as a reliable organic solvent for the extraction of phosphoric acid from aqueous solutions.  相似文献   

14.
Binary (vapour + liquid) equilibrium data were measured for the {pentafluoroethane (HFC-125) + dimethyl ether (DME)} system at temperatures from (313.15 to 363.15) K. These experiments were carried out with a circulating-type apparatus with on-line gas chromatography. The experimental data were correlated well by the Peng-Robinson Stryjek-Vera equation of state using the Wong-Sandler mixing rules.  相似文献   

15.
Phase equilibrium data have been measured for the ternary system hyperbranched polyglycerol + methanol + carbon dioxide at temperatures of 313–450 K and pressures up to 13.5 MPa. Phase changes were determined according to a synthetic method using the Cailletet setup. At elevated temperatures the system shows a liquid–liquid–vapor region with lower solution temperatures. Besides the vapor–liquid and liquid–liquid equilibria, the vapor–liquid to vapor–liquid–liquid and vapor–liquid–liquid to liquid–liquid phase boundaries are reported at different polymer molar masses and can serve as test sets for thermodynamic models. A distinct influence of the polymer molar mass on the vapor–liquid equilibrium can be noticed and indicates the existence of structural effects due to the polymer branching. Modeling the systems with the PCP-SAFT equation of state confirms these findings.  相似文献   

16.
A flow-type method was adopted to measure the vapor–liquid equilibria for methanol + methyl laurate and methanol + methyl myristate systems at 493–543 K, near the critical temperature of methanol (Tc = 512.64 K), and 2.16–8.49 MPa. The effect of temperature and fatty acid methyl esters to the phase behavior was discussed. The mole fractions of methanol in liquid phase are almost the same for both systems. In vapor phase, the mole fractions of methanol are very close to unity at all temperatures. The present vapor–liquid equilibrium data were correlated by PRASOG. A binary parameter was introduced to the combining rule of size parameter. The binary parameters of methanol + fatty acid methyl ester systems were determined by fitting the present experimental data. The correlated results are in good agreement with the experimental data. The vapor–liquid equilibria for methanol + methyl laurate + glycerol and methanol + methyl myristate + glycerol ternary systems were also predicted using the methanol + fatty acid methyl ester binary parameters. The mole fractions of methanol in vapor phase are around unity even if glycerol is included in the systems.  相似文献   

17.
Isobaric vapor–liquid equilibrium data (VLE) at 101.325 kPa have been determined in the miscible region for 1,1-dimethylethoxy-butane (BTBE) + methanol + water and 1,1-dimethylethoxy-butane (BTBE) + ethanol + water ternary systems, and for their constituent binary systems, methanol + BTBE and ethanol + BTBE. Both binary systems show an azeotrope at the minimum boiling point. In the ternary system BTBE + methanol + water no azeotrope has been found, however, the system BTBE + ethanol + water might form a ternary azeotrope near the top of the binodal. Thermodynamically consistent VLE data have been satisfactorily correlated using the UNIQUAC, NRTL and Wilson equations for the activity coefficient of the liquid phase. Temperature and vapor phase compositions have been compared with those calculated by the group-contribution methods of prediction ASOG, and the original and modified UNIFAC. Predicted values are not in good agreement with experimental values.  相似文献   

18.
(Liquid + liquid) equilibrium (LLE) data for the {water + acetic acid + dibasic esters mixture (dimethyl adipate + dimethyl glutarate + dimethyl succinate)} system have been determined experimentally at T = (298.2, 308.2, and 318.2) K. Complete phase diagrams were obtained by determining solubility curve and tie-line data. The reliability of the experimental tie-line data was confirmed by using the Othmer-Tobias correlation. The UNIFAC model was used to predict the phase equilibrium in the system using the interaction parameters determined from experimental data between CH2, CH3COO, CH3, COOH, and H2O functional groups. Distribution coefficients and separation factors were compared with previous studies.  相似文献   

19.
In this paper, the separation of toluene from cycloalkanes by liquid extraction using the ionic liquid 1-ethyl-3-methylimidazolium ethylsulfate, [EMim][ESO4], as solvent was studied. Liquid-liquid equilibrium (LLE) data for ternary systems {cyclohexane, or cyclooctane, or methylcyclohexane + toluene + [EMim][ESO4]} were determined at T = 298.15 K and atmospheric pressure. Selectivity and solute distribution ratio, derived from the tie-lines, were used to determine the ability of this ionic liquid as solvent for the separation of toluene from its mixtures with cycloalkanes. The degree of consistency of the tie-lines was tested using the Othmer-Tobias equation, and the experimental LLE data were correlated using the non-random two-liquid (NRTL) and the UNIversal QUAsi-Chemical (UNIQUAC) models.  相似文献   

20.
In this work, liquid–liquid equilibrium data were measured for three quinary mixtures (nonane + undecane + benzene + toluene + sulfolane), (nonane + undecane + benzene + m-xylene + sulfolane) and (nonane + undecane + toluene + m-xylene + sulfolane) at 298.15 and 313.15 K and ambient pressure. The experimental LLE data were determined by using a jacketed glass cell with temperature controlled. The quantitative analysis was performed by using a Varian gas chromatograph equipped with a flame ionization detector and a SPB™-1 column. The experimental quinary liquid–liquid equilibrium data have been satisfactorily correlated by using NRTL and UNIFAC-LLE models. The calculated values based on the NRTL model were found to be in a better agreement with the experiment than those based on the UNIFAC-LLE model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号