首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We consider some fundamental aspects of the calculation of the pressure from simulations by performing volume perturbations. The method, initially proposed for hard-core potentials by Eppenga and Frenkel [Mol. Phys.52, 1303 (1984)] and then extended to continuous potentials by Harismiadis et al. [J. Chem. Phys. 105, 8469 (1996)], is based on the numerical estimate of the change in Helmholtz free energy associated with the perturbation which, in turn, can be expressed as an ensemble average of the corresponding Boltzmann factor. The approach can be easily generalized to the calculation of components of the pressure tensor and also to ensembles other than the canonical ensemble. The accuracy of the method is assessed by comparing simulation results obtained from the volume-perturbation route with those obtained from the usual virial expression for several prototype fluid models. Monte Carlo simulation data are reported for bulk fluids and for inhomogeneous systems containing a vapor-liquid interface.  相似文献   

2.
Canonical Monte Carlo (NVT-MC) simulations were performed to obtain surface tension and coexistence densities at the liquid-vapor interface of one-site associating Lennard-Jones and hard-core Yukawa fluids, as functions of association strength and temperature. The method to obtain the components of the pressure tensor from NVT-MC simulations was validated by comparing the equation of state of the associative hard sphere system with that coming from isothermal-isobaric Monte Carlo simulations. Surface tension of the associative Lennard-Jones fluid determined from NVT-MC is compared with previously reported results obtained by molecular dynamics simulations of a pseudomixture model of monomers and dimers. A good agreement was found between both methods. Values of surface tension of associative hard-core Yukawa fluids are presented here for the first time.  相似文献   

3.
A simple model is proposed for the direct correlation function (DCF) for simple fluids consisting of a hard-core contribution, a simple parametrized core correction, and a mean-field tail. The model requires as input only the free energy of the homogeneous fluid, obtained, e.g., from thermodynamic perturbation theory. Comparison to the DCF obtained from simulation of a Lennard-Jones fluid shows this to be a surprisingly good approximation for a wide range of densities. The model is used to construct a density functional theory for inhomogeneous fluids which is applied to the problem of calculating the surface tension of the liquid-vapor interface. The numerical values found are in good agreement with simulation.  相似文献   

4.
Molecular dynamics simulations have been carried out to obtain the interfacial and coexistence properties of soft-sphere attractive Yukawa (SAY) fluids with short attraction range, κ = 10, 9, 8, 7, 6, and 5. All our simulation results are new. These data are also compared with the recently reported results in the literature of hard-core attractive Yukawa (HAY) fluids. We show that the interfacial and coexistence properties of both potentials are different. For the surveyed systems, here we show that all coexistence curves collapse into a master curve when we rescale with their respective critical points and the surface tension curves form a single master curve when we plot γ* vs. T/T(c).  相似文献   

5.
在Barker Henderson, Zhang以及Wertheim 等微扰理论的基础上,以方阱势硬球流体为参考体系,将Zhang的解析表达方法与Wertheim 的链成键自由能的处理方法结合起来,推导出自由链接的链状分子流体的Helmholtz自由能的解析表达式,并得到了压缩因子、内能、恒容热容等热力学性质的计算式.计算结果与MC(Monte Carlo)模拟结果吻合良好.对Zhang的解析表达式与“TPT D”(二阶Wertheim微扰理论)的结合也作了推导和计算.  相似文献   

6.
The infinite dilution activity coefficients of exactly athermal fluids were calculated by Monte Carlo simulation with hard-core models. The hard-core models used in this work were hard-sphere and hard-spherocylinder models. The Widom test particle method was adopted to calculate the residual chemical potentials of solutes in pure solvent and in pure solute solutions. The infinite dilution activity coefficients of solutes were obtained from the residual chemical potentials of solutes. The infinite dilution activity coefficients calculated by Monte Carlo simulation were compared with those of athermal terms in activity coefficient equations. Staverman–Guggenheim equation overestimates the activity coefficients. The deviations of activity coefficients increase with increasing the hard-core volume of solute. Flory–Huggins equation based on molar volume gives good results for the hard-spherocylinder systems. Elbro-FV equation gives good results for both the hard-sphere and hard-spherocylinder systems.  相似文献   

7.
基于密度泛函理论研究二元排斥Yukawa流体的表面结构性质   总被引:3,自引:0,他引:3  
杨振  徐志军  杨晓宁 《物理化学学报》2006,22(12):1460-1465
基于自由能密度泛函理论(DFT)考察了二元排斥Yukawa (HCRY)流体在不同外场下的密度分布. 基于微扰理论, 体系的Helmholtz自由能泛函采用硬球排斥部分和长程色散部分贡献之和, 其中Kierlik和Rosinberg的加权密度近似(WDA)被用来计算硬球排斥部分, 而色散部分采用平均场理论(MFT)进行描述. 为了验证DFT计算结果的合理性, 研究中采用巨正则Monte Carlo(GCMC)模拟计算了在不同主体相密度、硬核直径和位能参数比的条件下二元HCRY混合流体的密度分布. 结果表明, 该DFT计算结果与GCMC模拟值吻合良好.  相似文献   

8.
A thermodynamic model for the freely jointed square-well chain fluids was developed based on the thermodynamic perturbation theory of Barker-Henderson, Zhang and Wertheim. In this derivation Zhang's expressions for square-well monomers improved from Barker-Henderson compressibility approximation were adopted as the reference fluid, and Wertheim's polymerization method was used to obtain the free energy term due to the bond connectivity. An analytic expression for the Helmholtz free energy of the square-well chain fluids was obtained. The expression without adjustable parameters leads to the thermodynamic consistent predictions of the compressibility factors, residual internal energy and constant-volume heat capacity for dimer, 4-mer, 8-mer and 16-mer square-well fluids. The results are in good agreement with the Monte Carlo simulation. To obtain the MC data of residual internal energy and the constant-volume heat capacity needed, NVT MC simulations were performed for these square-well chain fluids.  相似文献   

9.
The depletion potential between two colloid particles immersed in a hydrogen bonding fluid has been investigated by density functional theory. The study is motivated by the wide applications of hydrogen bonding fluids in the field of colloid science, and the effects of relevant factors on the depletion potential and depletion force between colloid particles have been studied. These factors include the size ratio of the colloid particle to the fluid molecule, the bulk density of the fluid, the functionality (the number of proton acceptors a and proton donors d) and hydrogen bonding strength as well as the colloid-fluid interaction energy. By comparing the depletion potential calculated under various conditions, it is shown that the effects of these factors on the depletion potential are very significant, and in particular in regulating the depletion force and its range.  相似文献   

10.
A recently proposed parameter free version of a Lagrangian theorem-based density functional approximation (LTDFA) [S. Zhou, Phys. Lett. A 319, 279 (2003)] for hard-sphere fluid is applied to hard-core attractive Yukawa model fluid by dividing bulk second-order direct correlation function (DCF) of fluid under consideration into hard-core part and tail part. The former is treated by the parameter free version of the LTDFA, while the tail part is treated by second-order functional perturbation expansion approximation as done in a recent partitioned DFA [S. Zhou, Phys. Rev. E 68, 061201 (2003)]. Two versions of mean spherical approximation (MSA) for the bulk second-order DCF are employed as input, one is the less accurate plain MSA whose tail part of the second-order DCF is strictly independent of a density argument, the other is the more accurate inverse temperature expansion version of the MSA whose tail part is not strictly independent of the density argument. Calculational results indicate that prediction based on the plain MSA is far more accurate than that based on the inverse temperature expansion version of the MSA. The reason is considered to be that the partitioned DFA requires that the tail part is highly or completely independent of the density argument, the plain MSA, by assuming that the tail part is exactly the potential itself, embodies all of the nonlinearities into the hard-core part which can be treated satisfactorily by the parameter free version of the LTDFA. The present investigation results in a universal method for constructing DFA for nonuniform any nonhard-sphere interaction potential fluids.  相似文献   

11.
平板型高电位胶粒双电层的相互作用   总被引:4,自引:0,他引:4  
利用线性迭加法,提出了平行平板型高电位颗粒之间的弱相互作用的近似表达式.结合文献[3]给出的强相互作用表达式,对高电位平行平板型颗粒的相互作用给出了完整的描述,和精确数值解吻合相当好.强弱相互作用的接合点在κh=4,误差在接合点处最大,~10%.根据Derjaguin法和改进的Derjaguin法,求出了高电位球颗粒在恒电位条件下的相互作用能.  相似文献   

12.
The changes in Helmholtz free energies and entropies in dense fluids have been evaluated using three known analytical expressions for radial distribution functions (RDFs) of Lennard–Jones (L-J) fluid. This method provides a simpler and a more expeditious way for the calculation of free energy and entropy in L-J dense fluids through statistical mechanics. Previously, integral equations or perturbation theories were used for this purpose. Such approach not only tests the power of analytical distribution functions in predicting the changes in Helmholtz free energies and entropies, but also specifies better expressions in determining these properties. The results are compared with experimental data and an accurate analytic equation of state for the L-J fluid. It is shown if an expression properly presents RDFs as a function of interparticle distance, density and temperature, it is possible to calculate the changes in Helmholtz free energies and entropies from analytical distribution functions.  相似文献   

13.
We present a thermodynamically self-consistent Ornstein-Zernike approximation (SCOZA) for a fluid of spherical particles with a pair potential given by a hard-core repulsion and screened power series (SPS) tails. We take advantage of the known analytic properties of the solution of the Ornstein-Zernike equation for the case in which the direct correlation function outside the repulsive core is given by the SPS tails [M. Yasutomi, J. Phys.: Condens. Matter 13, L255 (2001)]: c(r)=∑(n=1) (N)exp(-z(n)r)∑(τ=-1) (L(n) )K((n,τ))z(n) (τ+1)r(τ) r>1. The analytic properties are rewritten so as to be optimally suited to the numerical computations. The SCOZA is known to provide very good overall thermodynamics, remarkably accurate critical point, and coexistence curve. In this paper, we present some numerical results for parameters in c(r) which are chosen to fit the Lennard-Jones potential. We show that both the energy and the compressibility paths lead to the same thermodynamics with high accuracy due to the thermodynamic consistency condition that has been enforced. The present method will be applicable to fluids with a large variety of smooth, realistic isotropic potentials where the pair potentials can be fitted by the SPS tails. The fitting procedure is superior to that by multi-Yukawa tails which is the only method presented so far.  相似文献   

14.
We have analyzed the currently available simulation results as well as performed some additional Monte Carlo simulation for the hard-core attractive Yukawa fluid in order to study its corresponding state behavior. We show that the values of reduced surface tension map onto the master curve and a universal equation of state can be obtained in the wide range of the attractive Yukawa tail length after a certain rescaling of the number density. Some comparisons with other nonconformal potentials are presented and discussed.  相似文献   

15.
The sedimentation equilibrium of colloidal suspensions modeled by hard-core attractive Yukawa (HCAY) fluids in a planar pore is studied. The density profile of the HCAY fluid in a gravitational field and its distribution between the pore and uniform phases are investigated by a density functional theory (DFT) approach, which results from employing a recently proposed parameter-free version of the Lagrangian theorem-based density functional approximation (Zhou, S. Phys. Lett. A 2003, 319, 279) for hard-sphere fluids to the hard-core part of the HCAY fluid, and the second-order functional perturbation expansion approximation to the tail part as was done in a recent partitioned density functional approximation (Zhou, S. Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top. 2003, 68, 061201). The resultant DFT approach is, thus, the first adjustable parameter-free DFT for HCAY fluids. The validity of the present DFT for HCAY fluids of reduced range parameter z(red) = 1.8 under various external potentials is established in the first of the papers cited previously. The present DFT for HCAY fluids can predict the radial distribution function for the bulk HCAY fluid accurately in the colloidal limit (large value of z(red)), and in the hard-sphere limit, its prediction for the density profile of the hard-sphere fluid in a gravitational field is in very good agreement with the existing simulation data. The dependence of the density profile and distribution coefficient on the magnitude of the interparticle attraction, gravitational field, and degree of confinement is investigated in detail by the present DFT approach. Intuitive and qualitative analyses are also compared with the quantitative DFT calculational results.  相似文献   

16.
17.
Various subsets of a new thermodynamic perturbation expansion for simple liquids [PHYSICAL REVIEW E 83, 021203 (2011)] is summed up by a new method to all orders which yield explicit formulas for the structure and thermodynamic of simple fluids. The formulas then have been tested successfully against computer simulations results for hard-core Yukawa potential.  相似文献   

18.
Deiters, U.K., 1985. A modification of Newton-Raphson algorithm for phase equilibria calculations using numerical differentiation of the Gibbs energy. Fluid Phase Equilibria, 19: 287-293.For the solution of the system of nonlinear equation describing the phase equilibrium conditions in fluid mixtures a modified Newton-Raphson method is proposed, which uses numerical differentiation to obtain the chemical potentials. For binary mixtures the new algorithm a little faster, because the same intermediate results that are required for the chemical potentials are also used for the construction of the Jacobian matrix.  相似文献   

19.
20.
The thermodynamic and structural behaviors of confined discrete-potential fluids are analyzed by computer simulations, studying in a systematic way the effects observed by varying the density, temperature, and parameters of the potentials that characterize the molecule-molecule interactions. The Gibbs ensemble simulation technique for confined fluids [A. Z. Panagiotopoulos, Mol. Phys. 62, 701 (1987)] is applied to a fluid confined between two parallel hard walls. Two different systems have been considered, both formed by spherical particles that differ by the interparticle pair potential: a square well plus square shoulder or a square shoulder plus square well interaction. These model interactions can describe in an effective way pair potentials of real molecular and colloidal systems. Results are compared with the simpler reference systems of square-shoulder and square-well fluids, both under confinement. From the adsorption characterization through the use of density profiles, it is possible to obtain specific values of the interparticle potential parameters that result in a positive to negative adsorption transition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号