首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Five impurities were observed when candesartan cilexetil tablets were subjected to stability and forced degradation studies. These impurities were successfully isolated and characterized as desethyl candesartan cilexetil, 1N-ethyl candesartan cilexetil, 2N-ethyl candesartan cilexetil, 1N-ethyl oxo candesartan cilexetil, and 2N-ethyl oxo candesartan cilexetil. A gradient reverse phase liquid chromatography (LC) and an isocratic preparative LC method were used to detect and isolate all five degradation products impurities simultaneously. Mass spectrometry, 1H/13C, DEPT and 2D NMR experiments were extensively utilized to characterize these impurities. Even though desethyl candesartan cilexetil, 1N-ethyl candesartan cilexetil were 2N-ethyl candesartan cilexetil were documented in the literature as known impurities, the regioisomers 1N-ethyl oxo candesartan cilexetil and 2N-ethyl oxo candesartan cilexetil were never noticed. Single-crystal diffraction data has been used to confirm their structure unambiguously and synthetic preparations of all known and unknown impurities were also presented.  相似文献   

2.
An isocratic reversed-phase liquid chromatographic method has been developed for quantitative determination of candesartan cilexetil, used to treat hypertension, in the bulk drug and in pharmaceutical dosage forms. The method is also applicable to analysis of related substances. Chromatographic separation was achieved on a 250 mm × 4.6 mm, 5 μm particle, CN column with a 50:50 (v/v) mixture of phosphate buffer, pH 3.0, and acetonitrile as mobile phase. The flow rate was 1.0 mL min−1 and the detection wavelength was 210 nm. Resolution of candesartan cilexetil and six potential impurities was greater than 2.0 for all pairs of compounds. The drug was subjected to hydrolytic, oxidative, photolytic, and thermal stress and substantial degradation occurred in alkaline and acidic media and under oxidative and hydrolytic stress conditions. The major product obtained as a result of basic hydrolysis was different from that produced by acid hydrolysis and aqueous hydrolysis. The stress samples were assayed against a reference standard and the mass balance was found to be close to 99.6%. The method was validated for linearity, accuracy, precision, and robustness.  相似文献   

3.
In the present study the International Conference on Harmonization‐prescribed stress degradation was carried out to study the degradation profile of edaravone. To establish a Quality by Design (QbD)‐assisted stability‐indicating assay, the reaction solutions in which different degradation products were formed were mixed. Plackett Burman and central composite design were used to screen and optimize experimental variables to resolve edaravone and its impurities with good peak symmetry using an RP C18 column. The method was validated according to International Conference on Harmonization guidelines. Seven unknown and two known degradation products were identified and characterized by LC‐MS/MS. Two major degradation products formed under thermal degradation were isolated and characterized as 4‐(4,5‐dihydro‐3‐methyl‐5‐oxo‐1‐phenyl‐1H‐pyrazol‐4‐yl‐4‐(4,5‐dihydro‐5‐hydroxy‐3‐methyl‐1‐phenyl‐1H‐pyrazol‐4‐yl)‐3‐methyl‐1‐phenyl‐1H‐pyrazol‐5(4H)‐one and 3‐hydroxy‐dihydro‐thiazolo[1‐(2‐methyl‐buta‐1,3dienyl)‐1‐phenylhydrazine]5‐one. The degradation pathways of degradants were proposed based on m/z values.  相似文献   

4.
Wang  Jian  Zhang  Fengmei  Ying  Zhihong  Hong  Liya 《Chromatographia》2015,78(15):1031-1039

Nine impurities in amikacin sulfate made in China were separated and identified by HPLC–MSn for the further improvement of official monographs in pharmacopoeias. The mass fragmentation patterns and structural assignment of these impurities were studied. The column was Acchrom Click XIon (250 × 4.6 mm, 5 μm). The mobile phase was 250 m mol L−1 ammonium formate and 1.4 % formic acid aqueous solution–acetonitrile–water (30:48:22). In positive mode, full scan LC–MS was first performed in order to obtain the m/z value of the protonated molecules, LC–MS–MS was then carried out on the compounds of interest on AB SCIEX 4000 Q TRAP™ composite triple quadrupole/linear ion trap tandem mass spectrometer. The complete fragmentation patterns of nine impurities were studied and used to obtain information about the structure of these impurities. The structures of nine impurities in amikacin sulfate were deduced based on the HPLC–MSn data, in which three impurities were novel impurities. Three novel impurities were 1-N-(l-4-amino-2-hydroxybutyryl) derivative of 4-O-(6-AG)DS, 1-N-(l-4-amino-2-hydroxybutyryl) derivative of 6-O-(3-AG)DS and 1-N-(l-4-amino-2-hydroxybutyryl) derivative of kanamycin D.

  相似文献   

5.
《Analytical letters》2012,45(14):2232-2243
Abstract

This article describes the development and validation of a first derivative UV quantitative analytical method for determination of candesartan cilexetil in tablet dosage forms. A signal at 270.1 nm of the first derivative spectrum (ID270.1) was found adequate for quantification. The limit of quantification was 3.06 µg/ml. The linearity between ID270.1 nm and concentration of candesartan cilexetil in the range of 6.00–32.00 µg/ml presented a correlation coefficient of (r2) = 0.9990. The mean recovery percentage was 100.97 and 99.23% for candesartan cilexetil standard solution and candesartan standard cilexetil solution with excipients, respectively. The intraday and interday accuracy of the assay was 98.60% and 99.10% respectively. The intraday and interday variability was below 2.0%.

The proposed method is accurate, precise, sensitive, and selective and can be used in quality control laboratories for its intended purpose.  相似文献   

6.
Summary A simple, sensitive, selective and robust isocratic LC method is described for the analysis of erythromycin on XTerra RP18. The main component, erythromycin A, is separated from all known related substances and degradation products. Several unknown impurities are also separated. Acetonitrile-0.2 MK2HPO4pH7.0-water, (35∶5∶60, v/v) was used as a mobile phase at 1.0 mL min−1. UV detection was at 215 nm. The robustness of the method was evaluated by a full-factorial experimental design.  相似文献   

7.
Rates and products of reaction and Arrhenius activation parameters were determined for the gas‐phase thermolysis of 14 substrates of the title compounds using sealed pyrex reactor tubes and HPLC/UV‐VIS to monitor substrate pyrolysis. The 14 compounds under study are N‐phenyl‐3‐oxo‐ ( 1 ), N‐(p‐chlorophenyl)‐3‐oxo‐ ( 2 ), N‐(p‐methylphenyl)‐3‐oxo‐ ( 3 ), and N‐(p‐methoxyphenyl)‐3‐oxobutanamide ( 4 ), in addition to (i) four substrates ( 5–8 ) obtained by the replacement of the pairs of methylene hydrogens at the 2‐position of compounds ( 1–4 ), each pair by a phenylhydrazono group; (ii) three arylhydrazono derivatives ( 9–11 ) in which Cl, CH3, or OCH3 groups are substituted at the para position of the phenylhydrazono moiety of compound 5 ; (iii) 3‐oxobutanamide (acetoacetamide, 12 ), N‐phenyl‐3‐oxo‐3‐phenylpropanamide ( 13 ), and N,N′‐diphenylpropanediamide ( 14 ). The reactions were conducted over 374–546 K temperature range, and the values of the Arrhenius log A(s?1) and Ea(kJ mol?1) of these reactions were, respectively, 12.0 ± 2.0 and 119.2 ± 17.0 for the ketoanilides ( 1–4, 12–14 ), and 13.0 ± 0.7 and 157.5 ± 8.6 for the arylhyrazono compounds ( 5–11 ). Kinetically, the arylhydrazono derivatives were found to be ca. 1.4 × 103 to 5.7 × 103 times less reactive than the parent ketoanilides. A mechanism is proposed to account for reaction products and to rationalize molecular reactivities. © 2006 Wiley Periodicals, Inc. Int J Chem Kinet 39: 82–91, 2007  相似文献   

8.
Tolnaftate, a thionoester anti‐fungal drug, was subjected to alkaline hydrolysis to produce methyl(m‐tolyl)carbamic acid and β ‐naphthol (tolnaftate impurity A). N‐Methyl‐m‐toluidine, tolnaftate impurity D, was synthesized and structurally elucidated along with tolnaftate alkaline degradation products using IR, H1NMR and MS. Two stability‐indicating HPTLC and RP‐HPLC methods were developed and validated, for the first time, for determination of tolnaftate, its alkaline degradation products and toxic impurities in the presence of methyl paraben, as a preservative in Tinea Cure® cream. The proposed HPTLC method depended on separation of the studied components on TLC silica gel F254 plates using hexane–glacial acetic acid (8:2, v/v) as a developing system and scanning wavelength of 230 nm. The proposed RP‐HPLC method was based on separation of the five components on an Eclipse plus C18 column. The mobile phase used was acetonitrile–water containing 1% ammonium formate (40:60, v/v), with a flow rate of 1 mL/min and detection wavelength of 230 nm. The proposed methods allowed the assay of tolnaftate toxic impurities, β ‐naphthol and N‐methyl‐m‐toluidine, down to 2%, allowing tracing of β ‐naphthol that could be absorbed by the skin causing systemic toxic effects, unlike tolnaftate, indicating the high significance of such determination. International Conference on Harmonization guidelines were followed for validation.  相似文献   

9.
Wang  Fan  Zeng  Hongxia  Wang  Jian 《Chromatographia》2013,76(23):1683-1695

Nineteen impurities in roxithromycin drug substance made in China were separated and identified by HPLC–MSn (TOF and TRAP) for the further improvement of official monographs in Pharmacopoeias. The fragmentation patterns and structural assignment of these impurities were studied. The column was Shim VP-ODS (250 × 4.6 mm, 5 μm). The mobile phase was 10 m mol L−1 ammonium acetate and 0.1 % formic acid aqueous solution-acetonitrile (62.5:37.5). In positive mode, full scan LC–MS was first performed to obtain the m/z value of the protonated molecules and formulas of all detected peaks on Agilent 6538Q TOF high resolution mass spectrometer. LC–MS-MS and LC–MS-MS–MS were then carried out on the compounds of interest on AB SCIEX 4000 Q TRAP™ composite triple quadrupole/linear ion trap tandem mass spectrometer. The complete fragmentation patterns of nineteen impurities were studied and used to obtain information about the structures of these impurities. The structures of nineteen impurities in roxithromycin drug substance were deduced based on the HPLC–MSn data, in which nine impurities were novel impurities.

  相似文献   

10.

A novel, simple and reliable reversed-phase liquid chromatography (LC)–spectrophotometric UV stability-indicating method was developed and validated for the simultaneous assay of marbofloxacin, clotrimazole and dexamethasone acetate in the presence of their impurities and degradation products in a pharmaceutical formulation for veterinary use. A C18 (75 × 4.6 mm, 4 µm) column was used with an acetonitrile–ammonium acetate mixture as mobile phase delivered with gradient elution. A diode-array detection was used in the 200–400 nm range and the detection wavelength was set at 260 nm. Validation carried out on the pharmaceutical dosage form, according to Veterinary International Conference on Harmonization guidelines, demonstrated excellent specificity, linearity, precision, accuracy and robustness. Excellent specificity with respect to vehicle and degradation products obtained after forced degradation (i.e., oxidation, acid, alkaline and thermal degradation) was demonstrated. As for linearity, the LC–UV assay method is applicable in the 0.180–0.420 mg mL−1 concentration range for marbofloxacin (r 2 = 0.99), 0.060–0.140 mg mL−1 for dexamethasone acetate (r 2 = 0.97) and 0.600–1.400 mg mL−1 for clotrimazole (r 2 = 0.98). Very good repeatability (RSD < 0.8 %) and inter-day precision (RSD < 2.5 %) were observed for all analytes. Accuracy was in the 93–104 %, 98–111 % and 99–108 % confidence interval (95 %) for marbofloxacin, dexamethasone acetate and clotrimazole, respectively. The variations (±20 %) of mobile phase flow rate and pH, and oven column temperature did not exhibit an impact on the analyte content accuracy, demonstrating the robustness of the method. The LC–UV method here developed and validated may be used routinely for quality control.

  相似文献   

11.
A detailed investigation of the ionization and lipophilicity profiles of selected sartans (valsartan, losartan, irbesartan, candesartan, candesartan cilexetil), a class of antihypertensives commonly used in therapy, is presented. The pKa macroconstants were determined by integrated potentiometry, capillary electrophoresis, and UV spectrophotometry. The measured pKa macroconstants were connected with the ionizable centers present in each molecule with the aid of model compounds. Potentiometric titrations with the GLpKa apparatus were performed to determine the distribution profile (log D vs. pH) of valsartan, while the shake‐flask procedure was used to characterize the distribution profile of the other compounds. Valsartan showed a lipophilicity profile consistent with the presence of two acidic centers. Losartan and irbesartan, which contain one acidic and one basic center, displayed the classical bell‐shaped profile of ordinary ampholytes. By contrast, a more complex situation emerged in the case of candesartan, due to the large number of ionization equilibria involved. The low solubility of candesartan cilexetil, together with the ease of hydrolysis of the ester moiety, prevented a successful investigation of its ionization and lipophilicity profiles.  相似文献   

12.

Speciation studies in aqueous solution on the interaction of Cu2+ and Zn2+ with a series of polyaminic ligands N-naphthalen-1-ylmethyl-N′-{2-[(naphthalen-1-ylmethyl)-amino]-ethyl}-ethane-1,2-diamine (Ll), N-naphthalen-1-ylmethyl-N′-(2-{2-[(naphthalen-1-ylmethyl)-amino]-ethylamino}-ethyl)-ethane-1,2-diamine (L2) and N-naphthalen-1-ylmethyl-N′-[2-(2-{2-[(naphthalen-1-ylmethyl)-amino]-ethylamino}-ethylamino)-ethyl]-ethane-1,2-diamine (L3) containing two naphthylmethyl groups at their termini and N 1-(2-{2-[(naphthalen-1-ylmethyl)-amino]-ethylamino}-ethyl)-ethane-1,2-diamine (L4) containing just one naphthylmethyl group have been carried out at 298.1 K in 0.15 mol dm?3 NaCl. In the case of the tetraamines L2 and L4, their coordination capabilities towards Cd2+, Ni2+, Co2+ and Pb2+ have also been considered. The stability constants follow the general Irving-Williams sequence. The steady-state fluorescence emission studies on the interaction with metal ions show that while Cu2+ produces a chelation enhancement of the quenching (CHEQ), the interaction with Zn2+ leads to a chelation enhancement of the fluorescence (CHEF). Finally, ligands L1, L2 and L3 have been successfully covalently attached to silica surfaces and some preliminary results of their emissive properties are given.  相似文献   

13.
The present paper describes the development of a stability indicating reversed phase column liquid chromatographic method for aripiprazole in the presence of its impurities and degradation products generated from forced decomposition studies. The drug substance was subjected to stress conditions of aqueous hydrolysis, oxidative, photolytic and thermal stress degradation. The degradation of aripiprazole was observed under acid hydrolysis and peroxide. The drug was found to be stable to other stress conditions attempted. Successful separation of the drug from the synthetic impurities and degradation products formed under stress conditions was achieved on an Inertsil phenyl column using a mixture of 0.2% trifluoroacetic acid and acetonitrile (55:45, v/v). The developed LC method was validated with respect to linearity, accuracy, precision, specificity and robustness. The assay method was found linear in the range of 25–200 μg mL?1 with a correlation coefficient of 0.9999 and the linearity of the impurities were established from LOQ to 0.3%. Recoveries of the assay and impurities were found between 97.2 and 104.6%. The developed LC method for the related substances and assay determination of aripiprazole can be used to evaluate the quality of regular production samples. It can also be used to test the stability samples of aripiprazole. To the best of our knowledge, the validated stability indicating LC method which separates all the impurities disclosed in this investigation was not published elsewhere.  相似文献   

14.
In order to study the effect of steric bulk on the vanadium coordination geometry in O, N‐chelated vanadium oxo (bis)phenolates, six different ortho‐aminophenolate ligands have been used. The ortho‐aminophenolate system was changed at three different places, i.e. 1) the second ortho position (C6) of the arene ring (R), 2) the substituents at the amino nitrogen (R′ and R″), and 3) the benzylic carbon atom (R*). The phenols were used in the preparation of the vanadium oxo (bis)phenolate complexes. In order to study whether it is possible to predict geometrical features of these vanadium complexes, UV/Vis, solution and frozen state EPR and 14N ESEEM spectroscopic data was measured and compared to the structural features of four structurally characterized vanadium oxo (bis)phenolates. Unfortunately, it turned out that is was not possible to correlate the EPR parameters, the UV/Vis HOMO‐LUMO transitions or 14N hyperfine couplings to the structural parameters.  相似文献   

15.
Gemifloxacin mesylate (GFM), chemically (R,S)‐7‐[(4Z)‐3‐(aminomethyl)‐4‐(methoxyimino)‐1‐pyrrolidinyl]‐1‐cyclopropyl‐6‐fluoro‐1,4‐dihydro‐4‐oxo‐1,8‐naphthyridine‐3‐carboxylic acid methanesulfonate, is a synthetic broad‐spectrum antibacterial agent. Although many papers have been published in the literature describing the stability of fluorquinolones, little is known about the degradation products of GFM. Forced degradation studies of GFM were performed using radiation (UV‐A), acid (1 mol L?1 HCl) and alkaline conditions (0.2 mol L?1 NaOH). The main degradation product, formed under alkaline conditions, was isolated using semi‐preparative LC and structurally elucidated by nuclear magnetic resonance (proton – 1H; carbon – 13C; correlate spectroscopy – COSY; heteronuclear single quantum coherence – HSQC; heteronuclear multiple‐bond correlation – HMBC; spectroscopy – infrared, atomic emission and mass spectrometry techniques). The degradation product isolated was characterized as sodium 7‐amino‐1‐pyrrolidinyl‐1‐cyclopropyl‐6‐fluoro‐1,4‐dihydro‐4‐oxo‐1,8‐naphthyridine‐3‐carboxylate, which was formed by loss of the 3‐(aminomethyl)‐4‐(methoxyimino)‐1‐pyrrolidinyl ring and formation of the sodium carboxylate. The structural characterization of the degradation product was very important to understand the degradation mechanism of the GFM under alkaline conditions. In addition, the results highlight the importance of appropriate protection against hydrolysis and UV radiation during the drug‐development process, storage, handling and quality control. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

16.
New methods of synthesis of N1,N2-bis(N 2-nitrocarbamimidoyl) dicarboxylic acid dihydrazides and ethyl [2-(N 2-nitrocarbamimidoyl)hydrazino](oxo)acetate from 1-methyl-2-nitro-1-nitrosoguanidine and dicarboxylic acid hydrazides were proposed. Cyclization of N1, N2-bis(N 2-nitrocarbamimidoyl) dihydrazides derived from malonic and succinic acids afforded the corresponding bis(3-nitroamino-1,2,4-triazol-5-yl)-alkanes, while N1,N 2-bis(N 2-nitrocarbamimidoyl)oxalohydrazide gave rise to previously unknown 5,5-bi-(3-nitroamino-1,2,4-triazole) salts. Heating of ethyl [2-(N 2-nitrocarbamimidoyl)hydrazino](oxo)acetate in water in the presence of alkali metal hydroxides or carbonates resulted in intramolecular ring closure with formation of 5(3)-nitroamino-1,2,4-triazole-3(5)-carboxylic acid or ethyl 5(3)-nitroamino-1,2,4-triazole-3(5)-carboxylate, respectively. Depending on the conditions, ethyl [2-(N 2-nitrocarbamimidoyl)hydrazino](oxo)-acetate reacted with nitrogen-containing nucleophiles (ammonia, hydrazine hydrate, aniline, and phenylhydrazine) to give linear of cyclic products.__________Translated from Zhurnal Organicheskoi Khimii, Vol. 40, No. 12, 2004, pp. 1787–1793.Original Russian Text Copyright © 2004 by Metelkina, Novikova.For communication VII, see [1].  相似文献   

17.
High‐valent iron‐oxo species have been invoked as reactive intermediates in catalytic cycles of heme and nonheme enzymes. The studies presented herein are devoted to the formation of compound II model complexes, with the application of a water soluble (TMPS)FeIII(OH) porphyrin ([meso‐tetrakis(2,4,6‐trimethyl‐3‐sulfonatophenyl)porphinato]iron(III) hydroxide) and hydrogen peroxide as oxidant, and their reactivity toward selected organic substrates. The kinetics of the reaction of H2O2 with (TMPS)FeIII(OH) was studied as a function of temperature and pressure. The negative values of the activation entropy and activation volume for the formation of (TMPS)FeIV?O(OH) point to the overall associative nature of the process. A pH‐dependence study on the formation of (TMPS)FeIV?O(OH) revealed a very high reactivity of OOH? toward (TMPS)FeIII(OH) in comparison to H2O2. The influence of N‐methylimidazole (N‐MeIm) ligation on both the formation of iron(IV)‐oxo species and their oxidising properties in the reactions with 4‐methoxybenzyl alcohol or 4‐methoxybenzaldehyde, was investigated in detail. Combined experimental and theoretical studies revealed that among the studied complexes, (TMPS)FeIII(H2O)(N‐MeIm) is highly reactive toward H2O2 to form the iron(IV)‐oxo species, (TMPS)FeIV?O(N‐MeIm). The latter species can also be formed in the reaction of (TMPS)FeIII(N‐MeIm)2 with H2O2 or in the direct reaction of (TMPS)FeIV?O(OH) with N‐MeIm. Interestingly, the kinetic studies involving substrate oxidation by (TMPS)FeIV?O(OH) and (TMPS)FeIV?O(N‐MeIm) do not display a pronounced effect of the N‐MeIm axial ligand on the reactivity of the compound II mimic in comparison to the OH? substituted analogue. Similarly, DFT computations revealed that the presence of an axial ligand (OH? or N‐MeIm) in the trans position to the oxo group in the iron(IV)‐oxo species does not significantly affect the activation barriers calculated for C?H dehydrogenation of the selected organic substrates.  相似文献   

18.
By the reaction of urea or thiourea, acetylacetone and hydrogen halide (HF, HBr or HI), we have obtained seven new 4,6‐dimethyl‐2‐pyrimido(thio)nium salts, which were characterized by single‐crystal X‐ray diffraction, namely, 4,6‐dimethyl‐2‐oxo‐2,3‐dihydropyrimidin‐1‐ium bifluoride, C6H9N2O+·HF2? or (dmpH)F2H, 4,6‐dimethyl‐2‐oxo‐2,3‐dihydropyrimidin‐1‐ium bromide, C6H9N2O+·Br? or (dmpH)Br, 4,6‐dimethyl‐2‐oxo‐2,3‐dihydropyrimidin‐1‐ium iodide, C6H9N2O+·I? or (dmpH)I, 4,6‐dimethyl‐2‐oxo‐2,3‐dihydropyrimidin‐1‐ium iodide–urea (1/1), C6H9N2O+·I?·CH4N2O or (dmpH)I·ur, 4,6‐dimethyl‐2‐sulfanylidene‐2,3‐dihydropyrimidin‐1‐ium bifluoride–thiourea (1/1), C6H9N2S+·HF2?·CH4N2S or (dmptH)F2H·tu, 4,6‐dimethyl‐2‐sulfanylidene‐2,3‐dihydropyrimidin‐1‐ium bromide, C6H9N2S+·Br? or (dmptH)Br, and 4,6‐dimethyl‐2‐sulfanylidene‐2,3‐dihydropyrimidin‐1‐ium iodide, C6H9N2S+·I? or (dmptH)I. Three HCl derivatives were described previously in the literature, namely, 4,6‐dimethyl‐2‐oxo‐2,3‐dihydropyrimidin‐1‐ium chloride, (dmpH)Cl, 4,6‐dimethyl‐2‐sulfanylidene‐2,3‐dihydropyrimidin‐1‐ium chloride monohydrate, (dmptH)Cl·H2O, and 4,6‐dimethyl‐2‐sulfanylidene‐2,3‐dihydropyrimidin‐1‐ium chloride–thiourea (1/1), (dmptH)Cl·tu. Structural analysis shows that in 9 out of 10 of these compounds, the ions form one‐dimensional chains or ribbons stabilized by hydrogen bonds. Only in one compound are parallel planes present. In all the structures, there are charge‐assisted N+—H…X? hydrogen bonds, as well as weaker CAr+—H…X? and π+X? interactions. The structures can be divided into five types according to their hydrogen‐bond patterns. All the compounds undergo thermal decomposition at relatively high temperatures (150–300 °C) without melting. Four oxopyrimidinium salts containing a π+X?…π+ sandwich‐like structural motif exhibit luminescent properties.  相似文献   

19.
Three unknown impurities of Rabeprazole, a proton pump inhibitor, were formed in the formulated drug under the stress conditions, [40 °C/75% relative humidity (RH) for 6 months] with relative retention times (RRTs) 0.17, 0.22 and 0.28. The Impurity‐I (0.17 RRT) was isolated using preparative HPLC and characterized by NMR and MS. The other two impurities, Impurity‐II (RRT 0.22) and Impurity‐III (RRT 0.28) could not be isolated, hence they are characterized by HPLC‐hyphenated techniques, LC–NMR and high‐resolution LC–MS. On the basis of the spectral data, the Impurity‐I, Impurity‐II and Impurity‐III were characterized as 1‐(1H‐benzo[d]imidazol‐2‐yl)‐3‐methyl‐4‐oxo‐1,4‐dihydropyridine‐2‐carboxylic acid, 1H‐benzo [d] imidazole‐2‐sulfonic acid and 4‐(3‐methoxy propoxy)‐3‐methyl‐2‐pyridine carboxylic acid, respectively. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

20.

A new, sensitive, stability indicating gradient RP-LC related substances and assay method has been developed for the quantitative determination of entacapone in bulk drugs. Efficient chromatographic separation was achieved on a C18 stationary phase with simple mobile phase combination of buffer and acetonitrile. Buffer consisted of 0.1% orthophosphoric acid, delivered in a gradient mode and quantitation was carried out using ultraviolet detection at 220 nm with a flow rate of 1.5 mL min−1. In the developed LC method the resolution (R s ) between entacapone and its three potential process impurities were found to be >2.0. Regression analysis showed an r 2 value (correlation coefficient) >0.99 for entacapone and its three potential impurities. This method was capable to detect all three process impurities of entacapone at a level of 0.003% with respect to test concentration of 0.5 mg mL−1 for a 20 μL injection volume. The inter- and intra-day precision values for all three impurities and for entacapone was found to be within 2.0% RSD. The method has shown good and consistent recoveries for entacapone in bulk drugs (99.2–101.5%) and its three impurities (99.5–102.2%). The test solution was found to be stable in diluent for 48 h. The drug substances were subjected to stress conditions of hydrolysis, oxidation, photolysis and thermal degradation. Considerable degradation was found to occur in acid stress, base stress and oxidative conditions. The stressed test solutions were assayed against the qualified working standard of entacapone and the mass balance in each case was close to 99.7% indicating that the developed method was stability-indicating. The developed RP-LC method was validated with respect to linearity, accuracy, precision and robustness.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号