首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Poly(vinylene arsine)s with no aromatic substituent ([? CH?CR? AsMe? ]n) were prepared through a radical alternating copolymerization of acetylenic compounds having an alkyl substituent with an organoarsenic homocycle as an arsenic‐atomic biradical equivalent. The radical reaction between 1‐octyne and pentamethylcyclopentaarsine, with a catalytic amount of 2,2′‐azobisisobutyronitrile without a solvent (60 °C, 10 h), produced the corresponding poly(vinylene arsine)s (45% yield). The copolymers obtained were soluble in tetrahydrofuran, chloroform, hexane, and so on. The copolymers were characterized with 1H and 13C NMR spectra. The number‐average molecular weights of the copolymers were estimated with gel permeation chromatography (chloroform and polystyrene standards) to be 6500. The copolymers showed an emission property attributable to the n–π* transition in the main chain. Irradiation by an incandescent lamp of a mixture of 1‐octyne and 1 also produced poly(vinylene arsine)s. The conversion rate of 1‐octyne during the copolymerization with 2,2′‐azobisisobutyronitrile was measured with gas chromatography analysis and was found to be much slower than that of phenylacetylene. A radical terpolymerization of cyclo‐(AsMe)5 with 1‐octyne and styrene was carried out to yield the terpolymer. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 3604–3611, 2004  相似文献   

2.
A group of new amphiphilic poly(phenylacetylene)s bearing polar oligo(ethylene oxide) pendants, poly{4‐[2‐(2‐hydroxyethoxy)ethoxy]phenylacetylene} ( 1 ), poly(4‐{2‐[2‐(2‐hydroxyethoxy)‐ethoxy]ethoxy}phenylacetylene) ( 2p ), poly(3‐{2‐[2‐(2‐hydroxyethoxy)ethoxy]ethoxy}phenylacetylene) ( 2m ), poly(4‐{2‐[2‐(2‐methanesulfonyloxyethoxy)ethoxy]ethoxy}phenylacetylene) ( 3 ), poly(4‐{2‐[2‐(p‐toluenesulfonyloxyethoxy)ethoxy]ethoxy}phenylacetylene) ( 4 ), poly(4‐{2‐[2‐(2‐trimethylsilyloxy‐ethoxy)ethoxy] ethoxy}phenylacetylene) ( 5 ), and poly(4‐{2‐[2‐(2‐chloroethoxy)ethoxy]ethoxy}phenylacetylene) ( 6 ), were synthesized with organorhodium complexes as the polymerization catalysts. The structures and properties of the polymers were characterized with IR, UV, NMR, and thermogravimetric analysis. 1 , 2p , and 2m , the three polymers containing pendants with hydroxyl groups, were oligomeric or insoluble. The organorhodium complexes worked well for the polymerization of the monomers without hydroxyl groups, giving soluble polymers 3 – 6 with a weight‐average molecular weight up to ~160 × 103 and a yield up to 99%. Z‐rich polymers 3 – 6 could be prepared by judicious selections of the catalyst under optimal conditions. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 1153–1167, 2006  相似文献   

3.
Catalysts CH3COCo(CO)3PPh3 ( 1 ) and HCo(CO)3PPh3 ( 2 ) catalyze the copolymerization of aziridine and carbon monoxide. Catalyst 2 can be conveniently generated in situ via reaction of Na+Co(CO)4, N,N‐dimethylanilinium chloride, and PPh3. The copolymerization alternates at high catalyst loadings to produce poly(β‐alanine). The end groups of the poly(β‐alanine) product are characterized by matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry and by comparison of the 1H NMR spectra of the polymer and a stepwise synthesized model compound. At low catalyst loadings, the polymer product contains both the β‐alanine units and amine units because of nonalternating enchainment of the comonomers. The characterization of the amine units is again supported by comparison of the 1H NMR spectra of the polymers and the stepwise synthesized model compounds. The molecular weights of the polymers are determined by gel permeation chromatography. The thermal stability of the polymers is probed by differential scanning calorimetry and thermogravimetric analysis. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 376–385, 2003  相似文献   

4.
The polymerization of zinc methacrylates coordinated with a bidentate ligand ( 1 – 4 ) was carried out in chloroform at 60°C. The polymerization of these monomers gave chloroform‐insoluble polymers. Stereoregularity of the polymers was estimated from 1H NMR spectra of poly(methyl methacrylate)s (PMMAs) derived from the original polymers. Monomers 1 and 2 gave slightly different polymers compared with conventional ones obtained by polymerization of methacrylic acid, while 3 afforded higher amounts of isotactic polymers than 1 and 2 . Conversely, 4 gave a polymer of high syndiotacticity. Furthermore, the relationship between triad tacticity and monomer concentration in the feed was studied. Consequently, it was demonstrated that the structure of bidentate ligands coordinated with zinc ion influences the stereoregularity of the resulting polymers.  相似文献   

5.
N-Propargylbenzamides 1-7 were polymerized with (nbd)Rh(+)[eta(6)-C(6)H(5)B(-)(C(6)H(5))(3)] to afford polymers with moderate molecular weights (M(n) = 26,000-51,000) in good yields. The (1)H NMR spectra demonstrated that the polymers have fairly stereoregular structures (81-88 % cis). The optically active polymers, poly(1) and poly(2), were proven by their intense CD signals and large optical rotations to adopt a stable helical conformation with an excess of one-handed screw sense when heated in CHCl(3) or toluene. The sign of Cotton effect could be controlled by varying the content in the copolymers of either chiral bulky 1 and achiral nonbulky 3, or chiral nonbulky 2 and achiral bulky 7. The smaller the pendant group in the copolymerization of achiral monomers with 1, the more easily did the preferential helical sense change with the copolymer composition. However, the copolymers of chiral nonbulky 2 and achiral nonbulky 3 did not change the helical sense, irrespective of the composition. The free energy differences between the plus and minus helical states, as well as the excess free energy of the helix reversal, of those chiral-achiral random copolymers were estimated by applying a modified Ising model.  相似文献   

6.
Novel star‐like hyperbranched polymers with amphiphilic arms were synthesized via three steps. Hyperbranched poly(amido amine)s containing secondary amine and hydroxyl groups were successfully synthesized via Michael addition polymerization of triacrylamide (TT) and 3‐amino‐1,2‐propanediol (APD) with feed molar ratio of 1:2. 1H, 13C, and HSQC NMR techniques were used to clarify polymerization mechanism and the structures of the resultant hyperbranched polymers. Methoxyl poly(ethylene oxide) acrylate (A‐MPEO) and carboxylic acid‐terminated poly(ε‐caprolactone) (PCL) were sequentially reacted with secondary amine and hydroxyl group, and the core–shell structures with poly(1TT‐2APD) as core and two distinguishing polymer chains, PEO and PCL, as shell were constructed. The star‐like hyperbranched polymers have different sizes in dimethyl sulfonate, chloroform, and deionized water, which were characterized by DLS and 1H NMR. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 1388–1401, 2008  相似文献   

7.
Hyperbranched polymers have attracted much attention over the past decade because of the expectation that theirunique molecular shape, branching pattern and surface functionality may impart unusual properties. Methods forthe synthesis of hyperbranched polymers are, however, rather limited. Cyclotrimerization of alkynes to aromaticrings is a century-old reaction. Although chemists have intensively investigated cyclotrimerization of variousdiynes in the last century, their attention was mainly f…  相似文献   

8.
<正>Novel main-chain-conjugated poly(carbazol-alt-squaraine) and poly(dipyridyl-alt-squaraine) were successfully synthesized through direct polycondensation of 9-(2-ethylhexyl)carbazole-bridged or dipyridyl-bridged bispyrrole and squaric acid.The structures and properties of the polymers were characterized using ~1H NMR,FT-IR,UV-vis and cyclic voltammetry.Both polymers exhibit excellent solubility in common organic solvents and good thermal stability.Their UV-vis absorption spectra indicated the polymers have broad and strong spectral responses from 200 nm to 900 nm,which reveals a low optical band gap around 1.38 eV, suggesting that they may be promising candidates for organic solar cells.  相似文献   

9.
The synthesis and characterization of poly(4‐hydroxystyrene) (PHS) and poly(4‐vinylphenol) (PVPh) by the polymer modification route are reported. Polystyrene prepared by free‐radical and anionic polymerization was acetylated quantitatively to poly(4‐acetylstyrene) (ACPS) with acetyl chloride and anhydrous aluminum trichloride in carbon disulfide. The acetylation worked equally well in a mixture of 1,2‐dichloroethane (DCE) and nitrobenzene containing largely DCE. The extent of the acetylation was estimated by 1H NMR. The oxidation of ACPS was carried out with various oxidizing agents and reaction conditions. The peracetic acid oxidation in chloroform resulted in quantitative oxidation to poly(4‐acetoxystyrene) (APS) as estimated by 1H NMR spectroscopy. The treatment of APS with hydrazine hydrate in dioxane resulted in the formation of PVPh. Deacetylation occurred with equal versatility in a mixture of aqueous sodium hydroxide and tetrahydrofuran. All the polymers were characterized via gel permeation chromatography, IR, UV, 1H NMR, and 13C NMR spectroscopic techniques. This is the first report on the synthesis of ACPS, APS, and PHS of reasonably narrow molecular weight distributions or otherwise by the polymer modification route. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 453–461, 2000  相似文献   

10.
以对甲氧基苯酚和溴壬烷为原料,经过醚化和双氯甲基化反应得到1,4-双(氯甲基)-2-甲氧基-5-壬氧基苯(BCMNONOB),BCMMONOB在强碱作用下通过脱氯化氢得到可溶性的聚(2-甲氧基-5-壬氧基)对苯乙炔(PMONOPV);首次采用脱氯化氢消除反应实现了BCMMONOB与1,4-双(氯甲基)-2,5-二甲基(BCMDMB)共聚。讨论了两种单体结构和縻尔比率及溶剂因素对聚合反应和共聚物溶解  相似文献   

11.
Nine dendronized poly(amide-triazole)s 2-Gm Gn (m=1-3, n=1-3), were prepared by the 1:1 copolymerization between AA-type dendritic diazides 4-Gm (m=1-3) and BB-type dendritic diacetylenes 5-Gn (n=1-3) under the copper(I)-mediated click coupling conditions. The degree of polymerization value of the polymers was found to range from 15-50, and decreased with increasing size of the dendron, suggesting steric hindrance had a retardation role on the copolymerization efficiency. Based on FT-IR and (1)H NMR studies, it was found that significantly strong, interchain hydrogen bonding between the amide units was present in the solution state after copolymerization, whereas the monomers 4-Gm and 5-Gn were devoid of any intermolecular hydrogen-bonding interaction. Hence a positive allosteric hydrogen-bonding effect was observed after polymerization, and could be rationalized by the zip effect. The strength of the interchain association in polymers 2-Gm Gn was found to decrease with increasing size of the dendron (i.e., 2-G1 G1>2-G1 G2>2-G2 G1≈2-G2 G2>2-G1 G3≈2-G3 G1>2-G2 G3≈2-G3 G2>2-G3 G3). Among the nine polymers, only 2-G1 G2 and 2-G2 G1 were good organogelators for aromatic solvents, while the 2-G2 G2 polymer, bearing the closest structural resemblance to the previously reported organogelator 1-G2 prepared from the polymerization of AB-type monomers, was devoid of gelating power. Careful analysis of structures of the present polymer series 2-Gm Gn and the previously reported series 1-Gn suggested that the polymer backbone symmetry played a subtle role in controlling their self-assembling and gelating properties.  相似文献   

12.
Functional phenylacetylene derivatives containing l-alanine and l-leucine moieties with chiral menthyl and achiral n-octyl terminal groups {HC[triple bond]C-C6H4-p-CONHCH(R)CO2R': R = CH3, R'= (-)-(1R,2S,5R)-menthyl [1(-)]; R = CH2CH(CH2)3, R' = (-)-(1R,2S,5R)-menthyl [2(-)]; R'= CH2CH(CH2)3, R' = (+)-(1S,2R,5S)-menthyl [2(+)]; R'= CH2CH(CH2)3, R' = (CH2)7CH3 (2o)} are synthesized. Polymerizations of the acetylene monomers are effected by organorhodium catalysts, giving corresponding polymers P1(-), P2(-), P2(+), and P2o of high molecular weights (Mw up to 1.2 x 10(6)) in high yields (up to 89%). The polymers are thermally stable (Td >or= 300 degrees C) and soluble in common organic solvents. The polymer structures are characterized by IR, NMR, UV, and CD spectroscopies. Intense CD signals are observed in the visible spectral region, indicating that the polymer chains are taking a helical conformation with an excess of preferred handedness. The backbone conjugation and chain helicity of the polymers can be tuned by changing their molecular structures [(a)chiral pendant groups] and by applying external stimuli (solvent and pH). Addition of trifluoroacetic acid to the polymer solutions decreases their molar ellipticities and enhances their backbone conjugations, inducing a halochromism with a continuous and reversible color change (yellow <==> red).  相似文献   

13.
The one‐pot synthesis of a main chain‐type polyrotaxane composed of axle molecules threaded through the macrocyclic units on the polymer main chain was achieved via the combination of cyclopolymerization and clipping procedures. The cyclopolymerization of an α,ω‐diethynyl monomer bearing an isophthalamide moiety ( 1 ), which clips onto an axle component bearing a pyridiniumdicarboxamide moiety ( 2·Cl ) through a chloride anion was carried out in chloroform with the monomer concentration of 0.06 mol L?1 at 40 °C using [Rh(nbd)Cl]2/Et3N as a catalyst to afford a gel‐free polymer. The resulting polymer was assigned to the main chain‐type polyrotaxane with a poly(phenylacetylene) backbone (poly‐ 3·Cl ) based on size exclusion chromatography and 1H NMR measurements. The diffusion‐order two‐dimensional NMR and circular dichroism spectra provided definitive proof of the rotaxaned architecture in the polymer. The mole fraction of the rotaxane unit in the total cyclic repeating unit was determined to be 26.3%. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

14.
原子转移自由基聚合[1],可同时适用于非极性单体和极性单体,如苯乙烯、二烯烃类和(甲基)丙烯酸酯、丙烯腈类单体[1~3],这是传统的活性聚合如阴离子聚合和基团转移聚合所不及的;可以用于制备包括无规、嵌段、星形与高支化物在内的诸多结构清晰的高分子化合物...  相似文献   

15.
The catalytic polymerization of a series of 1,6‐heptadiynes (1–4) by Mo(CO)6 under simple thermal conditions produces corresponding poly(1,6‐heptadiyne)s with highly conjugated polyenes. The number‐average molecular weights of the polymers range from 2400 to 110,000. The structures of the polymers depend on the types of monomers employed. Namely, diethyl dipropargylmalonate (DEDPM) and 1 result in a polyene backbone consisting of only five‐membered rings, whereas the remaining monomers (2–4) result in a mixture of both five‐membered and six‐membered ring structures. The copolymerization of DEDPM and phenylacetylene (PA) can also be effected by the same catalysis to yield a polyene backbone consisting of only five‐membered rings as well as PA. The relative molar ratio of the two monomers determines the yields and molecular weights of the copolymers. Comparative studies show that Mo(CO)6 exhibits reactivity toward DEDPM alone, thus initially catalyzing metathesis cyclopolymerization of DEDPM followed by copolymerization with PA. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 2663–2670, 2000  相似文献   

16.
以4,4'-二羟基苯基正戊酸和4,4'-二氟二苯酮为原料, 二甲基亚砜(DMSO)为溶剂, 采用亲核取代反应合成侧基含羧基的聚芳醚酮均聚物, 进一步与1-萘酚和2-萘酚接枝制备新型含萘可交联聚芳醚酮. 用核磁共振(NMR)、红外光谱(FTIR)、示差扫描量热(DSC)和热重分析(TGA)表征其结构和性能, 含萘聚芳醚酮在常用有机溶剂如N,N-二甲基乙酰胺(DMAc)、DMSO, 四氢呋喃(THF)中有良好的溶解性, 并具有很好的成膜性. DSC测试结果显示, 在170℃热处理2 h的交联聚合物的玻璃化转变温度(Tg)提高40℃. TGA数据显示接枝后的聚合物的5%热失重温度提高40~50℃, 证明其发生交联反应. 结果表明, 新型含萘可交联聚芳醚酮具有热固性树脂的耐溶剂和耐高温特性, 进一步拓宽了聚芳醚酮的应用前景.  相似文献   

17.
Pulsed IR laser ablation of poly(vinyl phenyl ketone) results in the formation of CO, C1-C4 hydrocarbons, benzene, styrene and phenylacetylene and affords deposition of polymeric films that were examined by EDX-SEM, FTIR, UV and NMR spectroscopies and gel-permeation chromatography. It is revealed that the structure of the films is affected by laser fluence and their Mw distribution is almost identical to that of poly(vinyl phenyl ketone). The formation of the products is accounted for by cleavages of both polymer backbone and pendant group. Conventional heating of poly(vinyl phenyl ketone) yields CO, formaldehyde, methanol and benzene as major volatile products and affords a solid fraction showing substantial fragmentation of the polymer. The different degradation products from both processes are ascribed to different modes of heating and to the wall effect.  相似文献   

18.
Four new 2,1,3‐benzooxadiazole‐based donor–acceptor conjugated polymers, namely poly{9‐(9‐heptadecanyl)‐9H‐carbazole‐alt‐5,6‐bis(octyloxy)‐4,7‐di(selenophen‐2‐yl)benzo[c][1,2,5]oxadiazole)}(PSBSC), poly{9‐(9‐heptadecanyl)‐9H‐carbazole‐alt‐5,6‐bis(octyloxy)‐4,7‐di(furan‐2‐yl)benzo[c][1,2,5]oxadiazole)}(PFBFC), poly{9,9‐dioctyl‐9H‐fluorene‐alt‐5,6‐bis(octyloxy)‐4,7‐di(selenophen‐2‐yl)benzo[c][1,2,5]oxadiazole)}(PSBSFL), and poly{9,9‐dioctyl‐9H‐fluorene‐alt‐5,6‐bis(octyloxy)‐4,7‐di(furan‐2‐yl)benzo[c][1,2,5]oxadiazole)}(PFBFFL), were synthesized via Stille polycondensation reaction. All polymers were found to be soluble in common organic solvents such as chloroform, tetrahydrofuran, and chlorobenzene. Their structures were verified by 1H‐NMR and the molecular weights were determined by gel permeation chromatography (GPC). The polymer films exhibited broad absorption bands. Among all polymers, photovoltaic cells based on the device structure of ITO/PEDOT:PSS/PSBSC:PC71BM(1:3, w/w)/LiF/Al revealed an open‐circuit voltage of 0.62 V, a short circuit current of 7.63 mA cm?2 and a power conversion efficiency of 1.89%. This work demonstrates a good example for tuning absorption range, energy level, and photovoltaic properties of the polymers with different spacers and donor units can offer a simple and effective method to improve the efficiency of PSCs. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 2459–2467  相似文献   

19.
Novel, optically active, stereoregular poly(phenylacetylene)s bearing the bulky fullerene as the pendant were synthesized by copolymerization of an achiral phenylacetylene bearing a [60]fullerene unit with optically active phenylacetylene components in the presence of a rhodium catalyst. The C60-bound phenylacetylene was prepared by treatment of C60 with N-(4-ethynylbenzyl)glycine in a Prato reaction. The obtained copolymers exhibited induced circular dichroism (ICD) in solution both in the main-chain region and in the achiral fullerene chromophoric region, although their ICD intensities were highly dependent on the structures of the optically active phenylacetylenes and the solution temperature. These results indicate that the optically active copolymers form one-handed helical structures and that the pendant achiral fullerene groups are arranged in helical arrays with a predominant screw sense along the polymer backbone. The structures and morphology of the copolymers on solid substrates were also investigated by atomic force microscopy.  相似文献   

20.
The metathesis polymerization of 1- and 2-ethynylanthracenes (1-EA and 2-EA) and 2- and 3-ethynylphenanthrenes (2-EP and 3-EP) in the presence of various WCl6-based catalysts produced widely conjugated soluble polymers with relatively high molecular weights. The highest weight-average molecular weights of poly(1-EA) and poly(2-EA) reached 61,000 and 26,000, respectively, when Ph4Sn was used as cocatalyst, while those of poly(2-EP) and poly(3-EP) reached 23,000 and 65,000, respectively, with Ph3Bi as cocatalyst. In contrast, MoCl5-based catalysts were hardly or not effective for these monomers. A large red-shifted peak was observed centering at 570 nm (the cutoff at 750 nm) in the absorption spectrum of poly(1-EA), while the red-shifted peaks were seen around 500 nm (the cutoffs near 700 nm) in the spectra of other polymers, indicating wide conjugations of the polymer chains. The configurational structures of all the polymers confirmed by DSC and 1H-NMR were trans structures. However, poly(1-EA) and poly(3-EP) appeared to consist partly of cis structures in their main chains. All of the present polymers showed relatively high thermal stability in air compared with poly(phenylacetylene). © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 3131–3137, 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号