首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Flash pyrolysis of polystyrene wastes in a free-fall reactor under vacuum   总被引:6,自引:0,他引:6  
Plastic waste minimization and recycling are important for both economical and environmental reasons. In this flash pyrolysis study, polystyrene wastes were degraded in a free-fall reactor under vacuum to regain the monomer. A set of experiments varied the temperature between 700 and 875°C and determined its effects on the phase yields, the benzene, styrene, toluene, and naphthalene distribution of the liquid output and C1–C4 content of the gaseous output. The liquid yield maximized around 750°C and the styrene yield at 825°C. In general, operating at higher temperatures lessened the solid residue and increased the gaseous yield and total conversion. Employing waste particles in four size ranges, a second set of runs indicated that the finer the waste particles fed the higher the gaseous yield and total conversion. This recycling method can be made more promising if the feed particles are allowed more time for degradation and the removal of the primary products speeded up thereby preventing their decomposition. Ways are suggested to obviate these residence time problems.  相似文献   

2.
Degradations of polypropylene (PP) and polyethylene (PE) over pure hexagonal mesoporous silica and aluminum-containing hexagonal mesoporous silica catalysts were studied in a fixed bed catalytic reactor at 380 and 430 °C, respectively. The thermal and catalytic degradations of both PP and PE in liquid-phase-contact and vapor-phase-contact modes over pure hexagonal mesoporous silica had no significant effect on the product yields. The liquid products were widely distributed in hydrocarbons with boiling point ranges of 36–405 °C. By adding a small amount of aluminum to the hexagonal mesoporous material, aluminium-containing hexagonal mesoporous silica exhibited good performance in cracking heavy molecular weight hydrocarbons into light hydrocarbons. High liquid yields and less coke deposits were obtained in liquid-phase-contact reaction with increasing aluminum content. The liquid products were mainly composed of C5–C10 hydrocarbons with boiling points of 36–174 °C, and propene, butene, and butane were main components in gaseous products. The effect of degradation temperature was not observed on product yields though degradation rate of polyolefin into liquid products was faster. Conversely, in vapor-phase-contact reaction, an increase in gaseous yield was observed when increasing the amount of aluminum and temperature of the cracking reactor, while the residue yield remained constant.  相似文献   

3.
Tire wastes in the form of used bicycle/rickshaw tires available in Bangladesh were pyrolyzed in a fixed-bed fire-tube heating reactor under different pyrolysis conditions to determine the role of final temperature, sweeping gas flow rate and feed size on the product yields and liquid product composition. Final temperature range studied was between 375 and 575 °C and the highest liquid product yield was obtained at 475 °C. Liquid products obtained under the most suitable conditions were characterized by elemental analyses, FT-IR, 1H NMR and GC–MS techniques. The results show that it is possible to obtain liquid products that are comparable to petroleum fuels and valuable chemical feedstock from bicycle/rickshaw tire wastes if the pyrolysis conditions are chosen accordingly.  相似文献   

4.
Pyrolysis of textile wastes: I. Kinetics and yields   总被引:1,自引:0,他引:1  
Thermal behavior of textile waste was studied by thermogravimetry at different heating rates and also by semi-batch pyrolysis. It was shown that the onset temperature of mass loss is within 104–156 °C and the final reaction temperature is within 423–500 °C. The average mass loss is 89.5%. There are three DTG peaks located at the temperature ranges of 135–309, 276–394 and 374–500 °C, respectively. The first two might be associated with either with decomposition of the hemicellulose and cellulose or with different processes of cellulose decomposition. The third peak is possibly associated to a synthetic polymer. At a temperature of 460 °C, the expected amount of volatiles of this waste is within 85–89%. The kinetic parameters of the individual degradation processes were determined by using a parallel model. Their dependence on the heating rate was also established. The pyrolysis rate is considered as the sum of the three reaction rates. The pyrolysis in a batch reactor at 700 °C and nitrogen flow of 60 ml/min produces 72 wt.% of oil, 13.5 wt.% of gas and 12.5 wt.% of char. The kinetic parameters of the first peak do not vary with heating rate, while those of the second and the third peak increase and decrease, respectively, with an increasing heating rate, proving the existence of complex reaction mechanisms for both cases.  相似文献   

5.
Self-sintering semicokes were prepared by pyrolysis of an aromatic petroleum residue at 460–480 °C and pressures of 0.1–1.0 MPa. The evolution of gases and thermoplasticity from resultant semicokes were monitored by TGA and TMA, respectively. Sintering behaviour of the semicokes is extremely sensitive to pyrolysis conditions which determine contents of volatile matter and binder phase. Semicokes produced at 1.0 MPa have high volatile contents with excessive plasticity. Changes of temperature and soak time, used to reduce volatile matter contents induce reductions to the plasticity and sintering. A lower pyrolysis pressure has a similar effect. Although the operational window is narrow, heat-treated compacts (2500 °C) can be made with high density (1.9 g cm−3) and bending strengths >75 MPa. Using high-temperature pyrolysis (460 °C) with a post-treatment at 350–400 °C eliminates light components, without decreasing sintering properties. Compacts from these powders also exhibit high density (1.9 g cm−3) with higher bending strengths >90 MPa, comparable or superior to mesocarbon microbeads (MCMB) obtained from the same precursor.  相似文献   

6.
One-step and stepwise laboratory batch vacuum pyrolysis of a mixture of birch bark (ca. 46%) and birch sapwood (ca. 54%) was carried out in the temperature range 25–550°C. The pyrolysis oil (defined as the total condensates, including water and organics) was analyzed by GC–MSD and the quantity of phenols (referred to monolignols in this paper) was determined as a function of temperature. The active zone of decomposition and the maximum recovery of phenols were found to be in the temperature range 275–350°C. Distribution of phenols, charcoal and water as a function of temperature was investigated. Stepwise and one-step pyrolysis yielded total phenols of 4.43 and 2.51 wt.% (anhydrous feed basis), respectively. The yields of pyrolysis oil (62.39 wt.%), wood charcoal (23.25 wt.%) and gas ( 14.36 wt.%) produced by both methods were approximately similar, on an anhydrous feed basis.  相似文献   

7.
Homogeneous membranes were prepared by casting the solution of blended chitosan and polyvinyl alcohol (PVA) on a glass plate. The percent weight of chitosan in the membrane was varied from 0 to 100%. The membrane thickness was in the range of 15–30 μm. The membranes were heat treated at 150 °C for an hour. After that the membranes were crosslinked by glutaraldehyde and sulfuric acid in acetone aqueous solution. The membranes were tested at 30–60 °C for dehydration performance of 50–95% isopropanol aqueous solutions. At around 90% of isopropanol in the feed mixture, permeate flux increased whereas the percent of water in permeate tended to decrease when the feed temperature increased for all membranes, except that the water content in permeate from the membrane containing 75 wt.% chitosan remained constant. The swelling degree in water and the total flux increased with increasing chitosan content in membranes. The effect of temperature on permeate flux followed the Arrhenius relationship. The permeate flux decreased when isopropanol in the feed increased for all membranes. However, water content in permeate and isopropanol concentration in the feed formed complex relationship for different chitosan content membranes. Sorption did not appear to have significant effects on separation. The membrane containing chitosan 75% performed the best. For a feed solution containing 90% isopropanol at 60 °C, the permeate flux was 644 g/m2 h with water content of nearly 100% in the permeate. At 55% isopropanol in the feed at 60 °C, the permeate flux was 3812 g/m2 h. In the range of 55–95% of isopropanol in the feed, the water content in permeate was more than 99.5%. This membrane showed very excellent performance with good mechanical strength. It is promising to develop this membrane for industrial uses.  相似文献   

8.
The fate of As, Pb, Cd, Cr and Mn in a coal during pyrolysis   总被引:1,自引:0,他引:1  
Transformation of As, Pb, Cd, Cr, and Mn in Chinese Datong coal during pyrolysis was studied. Experiments were carried out in a fixed-bed quartz reactor with a heating rate of 20 °C min−1. Effects of the final temperature (300–1000 °C) and atmosphere (N2 and H2 at 0.1 MPa) were examined. Chemical form distribution of the elements in the coal and coal-derived chars (obtained at 1000 °C under N2 and H2) was investigated. As, Pb, Cr, Cd, and Mn in the coal and the chars were classified into five chemical forms (ion exchangeable, bound to carbonates, bound to Fe–Mn oxides, bound to organic matter, and in the residue) by a sequential dissolution method. Results show that As, Pb, and Cd are more volatile and tend to enrich in the volatile phase in the pyrolysis. Cr and Mn are relative non-volatile and tend to enrich in the solid phase. H2 atmosphere promotes the release of the elements. The elements in all the five chemical forms undergo transformation in pyrolysis, and As, Pb, Cr and Cd show similar behavior.  相似文献   

9.
The objective of this study is to investigate experimentally and numerically into heat-up, drying and pyrolysis of a packed bed consisting of large single particles. The novelty of the current approach is that the numerical model contrary to continuum mechanic approaches considers a packed bed as an ensemble of a finite number of particles, which may have different material properties or sizes. The heat-up, drying and pyrolysis process of each particle is described sufficiently accurate by a set of one-dimensional and transient differential conservation equations for mass and energy. Applying this model to all particles, including interactions between them, of a packed bed forms the entire backed bed process as a sum of individual particle processes. The arrangement of particles within a bed defines a void space between the particles. The flow through the void space of a packed bed is modelled as a flow through a porous media taking into account interaction between the solid and the gaseous phase by heat and mass transfer. Experiments for drying and pyrolysis of a packed bed were carried out for validation in a temperature range of T=120–530 °C. The temperatures and the mass loss due to drying and pyrolysis were recorded during the experiments. The measured mass loss of the packed bed due to drying were well predicted by the constant evaporation temperature model of the particles and thus, indicating, that the drying process is transport limited by heat transfer for large wood particles in a temperature range of T=120–530 °C. A comparison between experiments and predictions of pyrolysis yielded reasonable agreement for temperatures above T=300 °C. For temperatures of T≈200 °C the deviations were not acceptable. However, the results show, that a particle resolved approach is well suited to describe packed bed processes.  相似文献   

10.
Pyrolysis of carbonaceous foundry sand additives: Seacoal and gilsonite   总被引:1,自引:0,他引:1  
Seacoal and gilsonite are used by the foundry industry as carbonaceous additives in green molding sands. In this study, pyrolysis was used to simulate the heating conditions that the carbonaceous additives would experience during metal casting. Gas chromatography–mass spectrometry was used to tentatively identify major organic products generated during their pyrolysis at 500, 750, and 1000 °C. A number of compounds of environmental concern were identified during the pyrolysis of seacoal and gilsonite, including substituted benzenes, phenolics, and polycyclic aromatic hydrocarbons (PAHs). These thermal decomposition products, and especially PAHs, were generated at each pyrolysis temperature in all foundry sands containing seacoal. In gilsonite-amended sand, however, mainly alkanes and alkenes were identified at 500 and 750 °C and PAHs at 1000 °C. Compared to seacoal, the most intense peaks occurred during the pyrolysis of sand containing gilsonite. The greatest loss of pyrolyzable material also occurred during heating of gilsonite-amended sand from ambient temperature to 1000 °C in a thermogravimetric analyzer. The results obtained from this study will be useful to green sand foundries looking to reduce volatile hydrocarbon emissions.  相似文献   

11.
Detoxification of brominated pyrolysis oils   总被引:1,自引:0,他引:1  
The development of an innovative technology for the pyrolytic conversion of brominated phenols in a reductive medium aimed at product recovery for commercial use is discussed in this paper. Brominated phenols are toxic products, which contaminate pyrolysis oil of wastes from electronic and electrical equipment (WEEE). The pyrolysis experiments were carried out with 2,6-dibromophenol, tetrabromobisphenol A, WEEE pyrolysis oil and polypropylene or polyethylene in encapsulated ampoules under inert atmosphere in quasi-isothermal conditions (300–400 °C) with a different residence time (10–30 min). Optimal conditions were found to be the use of polypropylene at 350 °C with a residence time of 20 min. The main pyrolysis products were identified as HBr and phenol. A radical debromination mechanism for the pyrolytic destruction of brominated phenols is suggested.  相似文献   

12.
The two-stage pyrolysis of fuel oil and vacuum residues separated from Egyptian crude oil have been carried out using a batch-type reactor technique. In the first stage, feedstocks undergo catalytic cracking in the presence of platinum as a catalyst at temperatures ranging between 380 and 460 °C and 440 and 520 °C for fuel oil and vacuum residues, respectively. Products are carried by argon gas for subsequent pyrolysis in the second stage at temperatures ranging between 700 and 820 °C and 700 and 800 °C for fuel oil and vacuum residues, respectively. The gas yields are about 94.1 and 82.0 wt% of the total products. The gases comprise saturated (C1----C5) and unsaturated hydrocarbons (ethylene, propylene, and butenes). By using platinum wire in the pyrolysis of fuel oil, the ethylene yield increases slightly as the temperature of the first stage increases, while it remains almost unchanged in the pyrolysis of vacuum residue. On the other hand, the propylene yield decreases slightly as the temperature of the first stage increases in the two feedstocks. By using a platinum sheet, the ethylene yield is doubled under the same conditions and increases slightly with an increase of temperature in the second stage. On the other hand, the propylene yield varies inversely with the temperature of the second stage by using platinum, whether as wire or sheet, although the yield is higher when platinum sheet is used under the same conditions.  相似文献   

13.
We describe the synthesis of cm-long strands consisting of single-walled carbon nanotube ropes. The method involves the thermolysis of ferrocene (FeCp2)–alcohol solutions under an Ar atmosphere at 800–950 °C. The tubes within strands could exhibit large diameters (2–3.5 nm OD) in high yields by either increasing the ferrocene concentration in the alcohol solution or by increasing the pyrolysis temperature. We noted that the nanotube material with the highest degree of crystallinity was produced at 950 °C, and as the ferrocene concentration in the alcohol solution increases (e.g., 1.2 wt%), the tubes tend to be metallic. This method appears to be simple, safer and more efficient than others reported in the literature because it does not require vacuum, sulphur agents, relatively high temperatures or large amounts of H2.  相似文献   

14.
Thermal decomposition of zinc carbonate hydroxide   总被引:3,自引:0,他引:3  
This study is devoted to the thermal decomposition of two zinc carbonate hydroxide samples up to 400 °C. Thermogravimetric analysis (TGA), boat experiments and differential scanning calorimetry (DSC) measurements were used to follow the decomposition reactions. The initial samples and the solid decomposition products were analyzed by scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared (FTIR) and laser particle size analyzer. Results showed that zinc carbonate hydroxide decomposition started at about 150 °C and the rate of decomposition became significant at temperatures higher than 200 °C. The apparent activation energies (Ea) in the temperature range 150–240 °C for these two samples were 132 and 153 kJ/mol. The XRD analyses of the intermediately decomposed samples and the DSC results up to 400 °C suggested a single-step decomposition of zinc carbonate hydroxide to zinc oxide with not much change in their overall morphologies.  相似文献   

15.
Simultaneous thermogravimetry–differential thermal analysis (TG–DTA) and gas and liquid chromatography with mass spectrometry detection have been used to study the kinetics and decomposition of 2-hydroxybenzoic acid, 2-carboxyphenyl ester, commercially known as salsalate. Samples of salsalate were heated in the TG–DTA apparatus in an inert atmosphere (100 ml min−1 nitrogen) in the temperature range 30–500 °C. The data indicated that the decomposition of salsalate is a two-stage process. The first decomposition stage (150–250 °C) had a best fit with second-order kinetics with Ea=191–198 kJ/mol. The second decomposition stage (300–400 °C) is described as a zero-order process with Ea=72–80 kJ/mol. The products of the decomposition were investigated in two ways:
(a)Salsalate was heated in a gas chromatograph at various isothermal temperatures in the range 150–280 °C, and the exit gas stream analyzed by mass spectrometry (GC–MS). This approach suggested that salsalate decomposes with the formation of salicylic acid, phenol, phenyl salicylate, and cyclic oligomers of salicylic acid di- and tri-salicylides.
(b)One gram samples of salsalate were heated in a vessel under nitrogen to 150 °C, and the residues were analyzed by liquid chromatography–mass spectrometry (LC–MS). The major compound detected was a linear tetrameric salicylate ester.
  相似文献   

16.
Gas phase pyrolysis (500–600°C, 1 s) of 1-phenyl-3-arsolene, 1-phenyl-3-methyl-3-arsolene, and 1-phenyl-3,4-dimethyl-3-arsolene gives polymeric (PhAs)x and its corresponding diene. Upon increasing the temperature, further decomposition to elemental arsenic and a mixture of aromatic hydrocarbons can be observed. If the pyrolysis is carried out with a large excess of butadiene or dimethylbutadiene, significant amounts of phenylarsinidene transfer products are formed.  相似文献   

17.
The pyrolysis of polyethylene(PE)/polypropylene(PP)/polystyrene(PS) mixed with high impact polystyrene (HIPS-Br) containing decabromo diphenylethane (DDE) as a brominated flame retardant with antimony trioxide as a synergist was performed under controlled temperature programmed pyrolysis (two steps) conditions to understand the decomposition behaviour and evolution of brominated hydrocarbons from flame-retardant additives. The liquid products were extensively analyzed by gas chromatographs equipped with FID, ECD, MSD, TCD, AED and FT-IR. The solid residue samples were analyzed by powder X-ray diffraction and combustion followed by ion-chromatography. The controlled pyrolysis of PE/PP/PS/HIPS-Br significantly affected the decomposition behaviour of HIPS-Br and subsequently the formation of decomposition products. GC/ECD analysis confirmed that the brominated hydrocarbons were concentrated in step 1 liquid products leaving less brominated hydrocarbons in the step 2 liquid products, similar to the decabromo diphenyl ether flame retardant containing mixed plastics. The yield of liquid products in step 1 from 3P/DDE-Sb(5) was 5 wt% and from 3P/DDE-Sb(0) was 2.4 wt%. The presence of antimony in the DDE containing plastics affected the yield of liquid, gas and residue products. ECD analysis showed that the presence of antimony increased the Br containing hydrocarbons and step 1 has 3-4 times higher brominated compounds than step 2 hydrocarbons in both the samples.  相似文献   

18.
A series of γ-Al2O3 samples modified with various contents of sulfate (0–15 wt.%) and calcined at different temperatures (350–750 °C) were prepared by an impregnation method and physically admixed with CuO–ZnO–Al2O3 methanol synthesis catalyst to form hybrid catalysts. The direct synthesis of dimethyl ether (DME) from syngas was carried out over the prepared hybrid catalysts under pressurized fixed-bed continuous flow conditions. The results revealed that the catalytic activity of SO42−/γ-Al2O3 for methanol dehydration increased significantly when the content of sulfate increased to 10 wt.%, resulting in the increase in both DME selectivity and CO conversion. However, when the content of sulfate of SO42−/γ-Al2O3 was further increased to 15 wt.%, the activity for methanol dehydration was increased, and the selectivity for DME decreased slightly as reflected in the increased formation of byproducts like hydrocarbons and CO2. On the other hand, when the calcination temperature of SO42−/γ-Al2O3 increased from 350 °C to 550 °C, both the CO conversion and the DME selectivity increased gradually, accompanied with the decreased formation of CO2. Nevertheless, a further increase in calcination temperature to 750 °C remarkably decreased the catalytic activity of SO42−/γ-Al2O3 for methanol dehydration, resulting in the significant decline in both DME selectivity and CO conversion. The hybrid catalyst containing the SO42−/γ-Al2O3 with 10 wt.% sulfate and calcined at 550 °C exhibited the highest selectivity and yield for the synthesis of DME.  相似文献   

19.
NaY zeolite tubular membranes in an industrial scale of 80 cm long were synthesized on monolayer and asymmetric porous supports. The quality of synthesized membranes were evaluated by pervaporation (PV) experiments in 80 cm long at 75 °C in a mixture of water (10 wt.%)/ethanol (90 wt.%), resulting in higher permeation fluxes of 5.1 kg m−2 h−1 in the monolayer type membrane and of 9.1–10.1 kg m−2 h−1 in the asymmetric-type membranes, respectively. The uniformity with small performance fluctuation in longitudinal direction of the membranes were observed by PV for 10–12 cm long samples at 50 °C in a mixture of methanol (10 wt.%)/MTBE (90 wt.%). The ethanol single component permeation experiments in PV and vapor permeation (VP) up to 130 °C and 570 kPa were performed to determine the relations between the ethanol flux and the ethanol pressure difference across the membrane which is represented by permeance (Π, mol m−2 s−1 Pa−1) for estimate of potential of ethanol extraction through the present NaY zeolite membranes applying feasible studies. Results indicate that (1) the permeation fluxes are linearly proportional to the driving force of vapor pressure for each sample in VP and PV. The permeances through an asymmetric support type membrane were rather constant of 0.6–1.2 × 10−7 mol m−2 s−1 Pa−1 in the wide temperature range of 90–130 °C in PV and VP, indicating that the ethanol permeances have weak temperature dependency with the feed at the saturated vapor pressure.

The results of superheating VP experiments showed that ethanol permeation fluxes are increased with increasing of the degree of superheating at a given constant feed vapor pressure. The ethanol permeances are increased with increasing of temperature at a given feed vapor pressure. The superheating VP could be a feasible process in industry.  相似文献   


20.
Cadmium concentration in lake sediments is determined by suspending the solid samples in a solution containing 5% (v/v) concentrated nitric acid and 0.1% (v/v) Triton X-100. Three modifiers were tested for the direct determination. The furnace temperature programmes and appropriate amount for each modifier were optimised to get the highest signal and the best separation between the atomic and background signals. The drying stage is performed by programming a 400 °C temperature, a ramp time of 25 s and hold time of 10 s on the power supply of the atomiser. No ashing step is used and platform atomisation is carried out at 2200 °C. W–Rh permanent modifier combined with conventional modifier by delivering 10 μl of 0.50% (w/v) NH4H2PO4 solution was the best chemical modifier for cadmium determination. This modifier also acts as a liquid medium for the slurry, thus simplifying the procedure. Calibration is performed using aqueous standards in the 1–5 μg l−1 range. The optimised method gave a limit of detection of 0.56 ng ml−1, characteristic mass of 10.1±0.8 pg for aqueous standard, 9.6±0.7 pg for slurry samples containing different Cd concentrations and good precision (7.6–5.2%). The method was validated by analysing four certified reference lake sediment materials: LKSD-1, LKSD-2, LKSD-3 and LKSD-4; satisfactory recoveries were obtained (90.0–96.3%) and no statistical differences were observed between the experimental and the certified cadmium concentration. The developed methodology was used to determine cadmium in three ‘real’ sediment samples from lakes in the area of Wielkopolski National Park, Poland.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号