首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
A significant activation of the Ctbd1;N group in organonitriles upon their coordination to a platinum(IV) center has been found in the reaction of [PtCl(4)(RCN)(2)] (R = Me, Et, CH(2)Ph) with the nitrile oxides 2,4,6-R'(3)C(6)H(2)CNO (R' = Me, OMe) to give the (1,2,4-oxadiazole)platinum(IV) complexes (R = Me, R' = Me (1); R = Et, R' = Me (2); R = Et, R' = OMe (3); R = CH(2)Ph, R' = Me (4)); the [2 + 3] cycloaddition was performed under mild conditions (unless poor solubility of [PtCl(4)(RCN)(2)] precludes the reaction) starting even from complexed acetonitrile and propionitrile, which exhibit low reactivity in the free state. The reaction between complexes 2-4 and 1 equiv of Ph(3)P=CHCO(2)Me in CH(2)Cl(2) leads to the appropriate platinum(II) complexes (5-7); the reduction failed only in the case of 1 insofar as this complex is insoluble in the most common organic solvents. All the platinum compounds were characterized by elemental analyses, FAB mass spectrometry, and IR and (1)H, (13)C((1)H), and (195)Pt NMR spectroscopies, and three of them also by X-ray crystallography. The oxadiazoles formed in the course of the metal-mediated reaction were liberated almost quantitatively from their Pt(IV) complexes by reaction of the latter (complexes 2-4) with an excess of pyridine in chloroform, giving free 1,2,4-oxadiazoles and trans-[PtCl(4)(pyridine)(2)]; the sequence of the Pt(IV)-mediated [2 + 3] cycloaddition and the liberation opens up an alternative route for the preparation of this important class of heterocycles.  相似文献   

2.
In a search for more hydrocarbon solvent soluble derivatives of the parent ligand, 2,6-[Ph(2)P(O)CH(2)](2)C(5)H(3)NO (1a), a series of new ligands, 2,6-[R(2)P(O)CH(2)](2)C(5)H(3)NO [R = Bz (1b); Tol (1c); Et (1d); Pr (1e); Bu (1f); Pn (1g); Hx (1h); Hp (1i); and Oct (1j)] and 2,6-[RR'P(O)CH(2)](2)C(5)H(3)NO [R = Ph, R' = Bz (2a); R = Ph, R' = Me (2b); R = Ph, R' = Hx (2c); R = Ph, R' = Oct (2d)], have been prepared by either Arbusov or Grignard substitutions on 2,6-bis(chloromethyl)pyridine followed by N-oxidation. The new ligands have been characterized by spectroscopic methods, and their coordination chemistry with selected lanthanide ions has been surveyed. Several 1:1 and 2:1 ligand/metal complexes have been isolated, and single-crystal X-ray diffraction analyses for Nd(2a)(NO(3))(3), Er(2a)(NO(3))(3), Yb(1d)(NO(3))(3), and [Nd(1c)(2)](NO(3))(3) are described. The new structural data are discussed in relation to the structures of complexes formed by 1a.  相似文献   

3.
2,4-Diaryl- and 2,4-diferrocenyl-1,3-dithiadiphosphetane disulfide dimers (RP(S)S)(2) (R = Ph (1a), 4-C(6)H(4)OMe (1b), FeC(10)H(9) (Fc) (1c)) react with a variety of alcohols, silanols, and trialkylsilyl alcohols to form new dithiophosphonic acids in a facile manner. Their corresponding salts react with chlorogold(I) complexes in THF to produce dinuclear gold(I) dithiophosphonate complexes of the type [AuS(2)PR(OR')](2) in satisfactory yield. The asymmetrical nature of the ligands allows for the gold complexes to form two isomers (cis and trans) as verified by solution (1)H and (31)P[(1)H] NMR studies. The X-ray crystal structures of [AuS(2)PR(OR')](2) (R = Ph, R' = C(5)H(9) (2); R = 4-C(6)H(4)OMe, R' = (1S,5R,2S)-(-)-menthyl (3); R = Fc, R' = (CH(2))(2)O(CH(2))(2)OMe (4)) have been determined. In all cases only the trans isomer is obtained, consistent with solid state (31)P NMR data obtained for the bulk powder of 3. Crystallographic data for 2 (213 K): orthorhombic, Ibam, a = 12.434(5) A, b = 19.029(9) A, c = 11.760(4) A, V = 2782(2) A(3), Z = 4. Data for 3 (293 K): monoclinic, P2(1), a = 7.288(2) A, b = 12.676(3) A, c = 21.826(4) A, beta = 92.04(3) degrees, V = 2015.0(7) A(3), Z = 2. Data for 4 (213 K): monoclinic, P2(1)/n, a = 11.8564(7) A, b = 22.483(1) A, c = 27.840(2) A, beta = 91.121(1) degrees, V = 7419.8(8) A(3), Z = 8. Moreover, 1a-c react with [Au(2)(dppm)Cl(2)] to form new heterobridged trithiophosphonate complexes of the type [Au(2)(dppm)(S(2)P(S)R)] (R = Fc (12)). The luminescence properties of several structurally characterized complexes have been investigated. Each of the title compounds luminesces at 77 K. The results indicate that the nature of Au...Au interactions in the solid state has a profound influence on the optical properties of these complexes.  相似文献   

4.
Treatment of diphosphines Ph(2)P(CH2)nPPh2 (n = 1, 2, 4, 6) and [Fe(eta5-C(5)H(4)PR'2)2] (R' = Ph, (i)Pr) with a two-fold excess of (RO)2P(=S)N3 (R = Et, Ph) results in the high-yield formation of the N-thiophosphorylated bis(iminophosphorane) derivatives (CH2)n[P{=NP(=S)(OR)2}Ph2]2 and Fe(eta5-C(5)H(4)[P{=NP(=S)(OR)2}R'2])2, respectively. The reactions of these ligands with AgSbF(6) in a 1 : 1 molar ratio have been investigated. The resulting silver(I) complexes, derived from the selective coordination of the P=S units, have been characterized by IR, NMR and MS (FAB) spectroscopy and, in selected cases, by X-ray crystallography. Monomeric, dimeric and polymeric solid-state structures, depending on the nature of the ligand backbone, have been found.  相似文献   

5.
设计并合成了一系列含手性和发光生色团侧基的聚(1-苯基-1-辛炔)衍生物{-[(C6H13)C=C(C6H4-p-CO2-R)]n-,R=[(1S)-endo]-(-)-冰片基(P3),(1R,2S,5R)-(-)-薄荷基(P4),-C6H4-p-(1R,2S,5R)-(-)-薄荷基(P5),2-萘基(P6),4-联苯基(P7)}.用WCl6-Ph4Sn作催化剂,成功地制备了这些具有中等产率和高分子量(Mw高达64000)的聚合物.聚合物的结构和性能通过NMR,TGA,UV,CD,PL和EL等分析方法进行了表征.所有聚合物都表现出良好的热稳定性,在N2保护条件下,其失重5%的温度在300~416℃之间.所有聚合物的带隙约为3.0eV.聚合物P4和P5表现出与聚合物链段螺旋性相对应的CD吸收.在UV辐照下,P3~P7的THF溶液均发射强烈蓝光,其最大发射波长位于485nm左右,量子效率均高于20%.聚合物薄膜发射与其溶液发射在相同的光谱区域,并表现出轻微的聚集诱导猝灭.制备了ITO/聚合物:PVK/BCP/Alq3/LiF/Al多层聚合物EL器件,其最大发射波长为487nm.随着侧基的改变,器件的最大亮度和外量子效率也随之发生变化,其中P6表现出最高的外量子效率(0.16%).EL器件均具有良好的光谱稳定性,其EL最大发射峰几乎不随外加电压的变化而改变.  相似文献   

6.
The dithiosalicylidenediamine Ni II complexes [Ni(L)] (R=tBu, R'=CH2C(CH3)2CH2 1, R'=C6H4 2; R=H, R'=CH2C(CH3)2CH2 3, R'=C6H4 4) have been prepared by transmetallation of the tetrahedral complexes [Zn(L)] (R=tBu, R'=CH2C(CH3)2CH2 7, R'=C6H4 8; R=H, R'=CH2C(CH3)2CH2 9, R'=C6H4 10) formed by condensation of 2,4-di-R-thiosalicylaldehyde with diamines H2N-R'-NH2 in the presence of Zn II salts. The diamagnetic mononuclear complexes [Ni(L)] show a distorted square-planar N2S2 coordination environment and have been characterized by 1H- and 13C NMR and UV/Vis spectroscopies and by single-crystal X-ray crystallography. Cyclic voltammetry and coulombic measurements have established that complexes 1 and 2, incorporating tBu functionalities on the thiophenolate ligands, undergo reversible one-electron oxidation processes, whereas the analogous redox processes for complexes 3 and 4 are not reversible. The one-electron oxidized species, 1+ and 2+, can be generated quantitatively either electrochemically or chemically with 70 % HClO4. EPR and UV/Vis spectroscopic studies and supporting DFT calculations suggest that the SOMOs of 1+ and 2+ possess thiyl radical character, whereas those of 1(py)2 + and 2(py)2 + possess formal Ni III centers. Species 2+ dimerizes at low temperature, and an X-ray crystallographic determination of the dimer [(2)2](ClO4)2.2 CH2Cl2 confirms that this dimerization involves the formation of a S-S bond (S...S=2.202(5) A).  相似文献   

7.
Five new 1,4,7-triazacyclononane-derived compounds, sodium 3-(4,7-dimethyl-1,4,7-triazacyclononan-1-yl)propionate (Na[LMe2R']) as well as the enantiopure derivatives (S)-1-(2-methylbutyl)-4,7-dimethyl-1,4,7-triazacyclononane (S-LMe2R'), SS-trans-2,5,8-trimethyl-2,5,8-triazabicyclo[7.4.01,9]tridecane (SS-LBMe3), (S)-1-(2-hydroxypropyl)-4,7-dimethyl-1,4,7-triazacyclononane (S-LMe2R), and (R)-1-(2-hydroxypropyl)-4,7-dimethyl-1,4,7-triazacyclononane (R-LMe2R), have been synthesized. Reaction of manganese dichloride with the chiral macrocycles S-LMe2R and R-LMe2R in aqueous ethanol gives, upon oxidation with hydrogen peroxide, the brown dinuclear Mn(III)-Mn(IV) complexes which are enantiomers, [Mn2(S-LMe2R)2(mu-O)2]3+ (S,S-1) and [Mn2(R-LMe2R)2(mu-O)2]3+ (R,R-1). The single-crystal X-ray structure analyses of [S,S-1][PF6]3.0.5(CH3)2CO and [R,R-1][PF6]3.0.5(CH3)2CO show both enantiomers to contain Mn(III) and Mn(IV) centers, each of which being coordinated to three nitrogen atoms of a triazacyclononane ligand and each of which being bridged by two oxo and by two chiral hydroxypropyl pendent arms of the macrocycle. The enantiomeric complexes S,S-1 and R,R-1 were found to catalyze the oxidation of olefins, alkanes, and alcohols with hydrogen peroxide. In the epoxidation of indene the enantiomeric excess values attain 13%. The bond selectivities of the oxidation of linear and branched alkanes suggest the crucial step in this process to be the attack of a sterically hindered high-valent manganese-oxo species on the C-H bond.  相似文献   

8.
To learn more about the bleaching action of pulps by (hydroxymethyl)phosphines, lignin chromophores, such as the alpha,beta-unsaturated aromatic aldehydes, sinapaldehyde, coniferylaldehyde, and coumaraldehyde, were reacted with the tertiary phosphines R2R'P [R = R' = Me, Et, (CH2)3OH, iPr, cyclo-C6H11, (CH2)2CN; R = Me or Et, R' = Ph; R = Ph, R' = Me, m-NaSO3-C6H4] in water at room temperature under argon. In all cases, initial nucleophilic attack of the phosphine occurs at the activated C=C bond to form a zwitterionic monophosphonium species. With the phosphines PR3 [R = Me, Et, (CH2)3OH] and with R2R'P (R = Me or Et, R' = Ph), the zwitterion undergoes self-condensation to give a bisphosphonium zwitterion that can react with aqueous HCl to form the corresponding dichloride salts (as a mixture of R,R- and S,S-enantiomers); X-ray structures are presented for the bisphosphonium chlorides synthesized from the Et3P and Me3P reactions with sinapaldehyde. With the more bulky phosphines, iPr3P, MePPh2, (cyclo-C6H11)3P, and Na[Ph2P(m-SO3-C6H4)], only an equilibrium of the monophosphonium zwitterion with the reactant aldehyde is observed. The weakly nucleophilic [NC(CH2)2]3P does not react with sinapaldehyde. An analysis of some exceptional 1H NMR data within the prochiral phosphorus centers of the bisphosphonium chlorides is also presented.  相似文献   

9.
A series of unsymmetrical 1,2-bis(phosphino)ethanes R(2)PCH(2)CH(2)PR'(2) and 1-arsino-2-phosphinoethanes R(2)AsCH(2)CH(2)PR'(2) mainly with bulky substituents R and R' were prepared from the cyclic sulfate by stepwise cleavage of the carbon-oxygen bonds by LiPR(2) and LiPR'(2) or LiAsR(2) and LiPR'(2), respectively. Analogously, racemic mixtures of R(2)PCH(2)CH(Me)PPh(2)(R =iPr, Cy ) as well as the enantiomers (R)-, (R)- and (R)-tBu(2)PCH(2)CH(Me)PPh(2)(R)- were obtained from the corresponding unsymmetrical cyclic sulfates and (S)-. On a similar route, the racemates of the 1,3-bis(phosphino)propanes R(2)PCH(2)CH(2)CH(Me)PPh(2)(R =iPr, tBu ), optically pure (R)- and (S,S)-iPr(2)PCH(Me)CH(2)CH(Me)PPh(2)(S,S)- were prepared. The reaction of [[RhCl([small eta](4)-C(8)H(12))](2)] with chelating ligands L-L, where L-L is R(2)PCH(2)P(men)(2)(R =iPr, Ph; men =(1S,2R,5S)-menthyl), Cy(2)AsCH(2)P(men)(2), or (R)-, (R)-, (R)-, (R)- and (S,S)-, in the presence of AgPF(6), gave the complexes [Rh(eta(4)-C(8)H(12))(L-L)]PF(6) which were used as pre-catalysts in the hydrogenation of the methyl ester of alpha-acetamidocinnamic acid (ACM). Depending on L-L, the solvent, the temperature and the pressure of H(2), optical yields of up to 69% ee were achieved. For two of the rhodium complexes, and, the molecular structures were determined by X-ray crystallography.  相似文献   

10.
A series of iron(II) complexes, trans-[Fe(NCMe)(2)(PR(2)CH(2)CH═NCH(2)CH(2)N═CHCH(2)PR(2))][BPh(4)](2) (5, R = Cy; 7, R = iPr; 9, R = Et) were prepared via the template synthesis in one-pot involving air-stable phosphonium dimers, [cyclo-(-PR(2)CH(2)CH(OH)-)(2)](Br)(2) (4, R = Cy; 6, R = iPr; 8, R = Et), KOtBu, [Fe(H(2)O)(6)][BF(4)](2) and ethylenediamine in acetonitrile. In the synthesis of 9, a methanol/acetonitrile solvent mixture was required; otherwise an intermediate iron bis(tridentate) complex, [Fe(PEt(2)CH(2)CH═NCH(2)CH(2)NH(2))(2)](2+), formed as determined by electrospray ionization mass spectrometry (ESI-MS). The crude iron(II) complexes from a template synthesis with ethylenediamine or (S,S)-1,2-diphenylethylenediamine are stirred in acetone under a CO atmosphere (~2 atm) overnight to displace a NCMe ligand; however, in addition to this, bromide displaces an NCMe ligand as well to form a new class of the iron complexes trans-[Fe(CO)(Br)(PR(2)CH(2)CH═NCHR'CHR'N═CHCH(2)PR(2))](+) (10 R = Cy, R' = H; (S,S)-11, R = Cy, R' = Ph; 12, R = iPr, R' = H; (S,S)-13, R = iPr, R' = Ph; 14, R = Et, R' = H; (S,S)-15, R = Et, R' = Ph). These complexes were isolated in moderate yields (55-84%) as tetraphenylborate salts. Complexes 10-15 were tested for the catalytic transfer hydrogenation of acetophenone in basic iso-propanol at 25 and 50 °C. The complexes 10-13 (where R = Cy or iPr) were inactive while the complexes 14 and (S,S)-15 (where R = Et) were active at 25 °C but had better activity at 50 °C. Complex (S,S)-15 was higher in activity than complex 14, achieving turnover frequencies as high as 4100 h(-1), conversions of acetophenone to (R)-1-phenylethanol as high as 80% and an enantiomeric excess (e.e.) of 50% in the product. As catalysis progressed, the e.e. diminished to as low as 26%.  相似文献   

11.
Binuclear half-metallocene chromium complexes {Cp*[3-(CH==NR)-2-O-C(10)H(5)]CrCl}(2) [Cp* = C(5)Me(5); R = (i)Pr (1), Ph (2), 2,6-(i)Pr(2)C(6)H(3) (3)] based on 1,1'-binaphthyl ligands, as well as their mononuclear analogues Cp*[3-(CH==NR)-2'-R'-2-O-C(20)H(11)]CrCl [R = (i)Pr, R' = (n)BuO (4), R = Ph, R' = (n)BuO (5), R = 2,6-(i)Pr(2)C(6)H(3), R' = (n)BuO (6), R = (i)Pr, R' = H (7)], were synthesized and characterized by mass spectrometry, elemental analysis, magnetic measurement, and UV-vis spectroscopy. The molecular structures of complexes 1, 3, 5 and 6 were further confirmed by single-crystal X-ray crystallographic analysis. When activated with a small amount of AlMe(3), these binuclear complexes exhibited higher activities in catalyzing ethylene polymerization in comparison with their mononuclear analogues, affording high molecular weight polymers with unimodal molecular weight distributions. The highest activity up to 2.87 × 10(6) g PE (mol Cr)(-1) h(-1) was achieved in the catalyst system of complex 3 bearing a bulky 2,6-(i)Pr(2)C(6)H(3) group on the imine nitrogen atom in the presence of 25 equiv. AlMe(3) as activator at 20 °C. (13)C NMR analysis indicates the resultant polymers are linear and no evidence on branch was found.  相似文献   

12.
The reaction of P4S10 with acyloins, RC(O)CH(OH)R, in refluxing dioxane, followed by the addition of alkylating agents, forms dithiolene thiophosphoryl thiolate compounds, (R2C2S2)P(S)(SR'), which are readily isolated and purified. The compounds that have been prepared and identified spectroscopically are those with R = p-anisyl, R' = Me (1); R = p-anisyl, R' = Bz (2); R = Ph, R' = Me (4); R = Et, R' = Bz (5). Compounds 1, 2, and 4 were structurally characterized by X-ray crystallography and found to possess a tetrahedral coordination geometry about the phosphorus atom, with overall Cs symmetry. In each case, the mirror plane bisects the dithiolene S-P-S chelate and contains the thiophosphoryl bond, which ranges in length from 1.9241(8) to 1.9361(7) A. The use of 2-(bromomethyl)naphthalene as organic electrophile in the P4S10/acyloin reaction produced bis(2-methylnaphthalenyl) disulfide as the only identifiable product. The substitution of Lawesson's reagent for P4S10 in reactions with acyloins produced deoxy acyloin rather than products resulting from chalcogen exchange. Compounds 1-2 and 4-5 are Group 5 analogues of 1,3-dithiol-2-ones, (R2C2S2)C=O, and undergo a similar hydrolysis in aqueous base to liberate ene-1,2-dithiolate dianions from which corresponding metal dithiolene complexes may be prepared. Deprotection of 1 in MeO-/MeOH, followed by the addition of NiCl2.6H2O and then I2, produces square planar [Ni(S2C2(C6H4-p-OCH3)2)2] (8) in 93% yield. A high-resolution structure of 8 (P) reveals dithiolene C-C and C-S bond lengths that are clearly indicative of the thionyl radical monoanionic nature of the ligand. The use of isolated (R2C2S2)P(S)(SR') compounds as a dithiolene ligand source for the preparation of metal dithiolene complexes offers the advantages of clean reactivity and high yield.  相似文献   

13.
The complexes [Ni(eta(3)-CH(2)CHCH(2))Br(kappa(1)P-PR(2)CH(2)CH=CH(2))] (R = Ph 1, (i)Pr2 ) and [Ni(eta(3)-CH(2)C(R')CH(2))(kappa(1)P-PR(2)CH(2)CH=CH(2))(2)][BAr'(4)] (R' = H, R = Ph 4a, R = (i)Pr 4b; R' = CH(3), R = Ph 5a, R = (i)Pr 5b; Ar' = 3,5-C(6)H(3)(CF(3))(2)) have been prepared and characterized. The X-ray crystal structures of 1, 2 and 5b have been determined. 4a-b and 5a-b are catalyst precursors for the oligomerization of RC(6)H(4)CH=CH(2) to oligostyrene (R = H) or oligo(4-methylstyrene) (R = CH(3)) respectively, without the need of a co-catalyst such as methylalumoxane. The catalytic activities range from moderate to high. The oligomerization reactions are carried out in the temperature interval 25-40 degrees C in 1,2-dichloroethane, using an olefin/catalyst ratio equal to 200, yielding oligostyrenes with a high isotactic fraction content P(m), with M(n) in the range 700-1900 Dalton, and polydispersities between 1.22 and 1.64. The cationic complexes 4a-b and 5a-b are also effective catalyst precursors for the hydrosilylation reactions of styrene or 4-methylstyrene with PhSiH(3) in 1,2-dichloroethane at 40 degrees C using an olefin/catalyst ratio equal to 100, leading selectively to RC(6)H(4)CH(SiH(2)Ph)CH(3) (R = H, CH(3)) in 50-79% yield.  相似文献   

14.
Hydrolysis products of organotin compounds RC(6)H(4)OCH(2)COOSn(CH(2)ph)(3) (R = o-NO(2), 1; m-NO(2), 2; p-NO(2), 3; o-CH(3), 4; o-OCH(3), 5; o-Cl, 6; o-Br, 7) and RC(6)H(3)OCH(2)COOSn(CH(2)ph)(3) (R = o,o-2CH(3), 8, o-OCH(3), p-CHO, 9; o,p-2Cl, 10), produced in aqueous acetonitrile solution, have been investigated by electrospray mass spectrometry (MS) and MS(n) techniques. The complexes [Y(2)SnXR'](-), [Y(3)SnXR'](-), [Y(3)SnX(2)R'](-), [Y(2)SnX(3)R'](-), and fragment ions of [Y(3)SnR'](-), plus abundant RC(6)H(4)(or RC(6)H(3))OCH(2)COO(-) and RC(6)H(4)(or RC(6)H(3))O(-) ions are observed in negative mode, whereas the protonated molecular ion [M + H](+), complexes [Y(2)SnXR'](+), [Y(3)SnXR'](+), [Y(2)SnX(2)R'](+), [Y(3)SnX(2)R'](+), [Y(2)SnX(3)R'](+), [Y(3)SnX(3)R'](+), as well as [YSnXR'](+), [M - CH(2)ph](+), XSn(+), (phCH(2))(3)Sn(+), phCH(2)Sn(+) (Y = &bond;CH(2)ph, X = &bond;OOCCH(2)OC(6)H(4)R(or C(6)H(3)R)) are detected in the positive mode. Water adduct ions are seen in both modes. The assignments are facilitated by agreement between observed and calculated isotopic patterns and tandem mass spectrometry studies.  相似文献   

15.
Huang Y  Liu T  Lin J  Lü J  Lin Z  Cao R 《Inorganic chemistry》2011,50(6):2191-2198
One-dimensional (1D) homochiral nickel coordination polymers [Ni(3)(bpdc)(RR-L)(2)·(DMF)](n) (2R, RR-L = (R,R)-(-)-1,2-cyclohexanediamino-N,N'-bis(3-tert-butyl-5-(4-pyridyl)salicylidene), bpdc = 4,4'-biphenyldicarboxylic acid) and [Ni(3)(bpdc)(SS-L)(2)·(DMF)](n) (2S, SS-L = (S,S)-(-)-1,2-cyclohexanediamino-N,N'-bis(3-tert-butyl-5-(4-pyridyl)salicylidene) based on enantiopure pyridyl-functionalized salen(Ni) metalloligand units NiL ((1,2-cyclohexanediamino-N,N'-bis(3-tert-butyl-5-(4-pyridyl)salicylidene))Ni(II)) have been synthesized and characterized by microanalysis, IR spectroscopy, solid-state UV-vis spectroscopy, thermogravimetric analysis (TGA), circular dichroism (CD) spectroscopy, cyclic voltammetric measurement, and powder and single crystal X-ray diffraction. Each NiL as unbridging pendant metalloligand uses one terminal pyridyl group to coordinate achiral unit (nickel and bpdc(2-)) building a helical chain, while the other pyridyl group remains uncoordinated. Both 2R and 2S contain left- and right-handed helical chains made of the achiral building blocks, while the NiL as remote external chiral source is perpendicular to the backbone of the helices. The nickel coordination polymers 2R and 2S containing unsaturated active nickel center in metalloligand NiL can be used as self-supported heterogeneous catalysts. They show catalytic activity comparable with their homogeneous counterpart in alkene epoxidation and exhibit great potential as recyclable catalysts.  相似文献   

16.
The synthesis and characterisation of novel Li and Yb complexes is reported, in which the monoanionic beta-diketiminato ligand has been (i) reduced (SET or 2 [times] SET), (ii) deprotonated, or (iii) C-N bond-cleaved. Reduction of the lithium beta-diketiminate Li(L(R,R'))[L(R,R')= N(SiMe(3))C(R)CHC(R')N(SiMe(3))] with Li metal gave the dilithium derivative [Li(tmen)(mu-L(R,R'))Li(OEt(2))](R = R'= Ph; or, R = Ph, R[prime or minute]= Bu(t)). When excess of Li was used the dimeric trilithium [small beta]-diketiminate [Li(3)(L(R,R[prime or minute]))(tmen)](2)(, R = R'= C(6)H(4)Bu(t)-4 = Ar) was obtained. Similar reduction of [Yb(L(R,R'))(2)Cl] gave [Yb[(mu-L(R,R'))Li(thf)](2)](, R = R[prime or minute]= Ph; or, R = R'= C(6)H(4)Ph-4 = Dph). Use of the Yb-naphthalene complex instead of Li in the reaction with [Yb(L(Ph,Ph))(2)] led to the polynuclear Yb clusters [Yb(3)(L(Ph,Ph))(3)(thf)], [Yb(3)(L(Ph,Ph))(2)(dme)(2)], or [Yb(5)(L(Ph,Ph))(L(1))(L(2))(L(3))(thf)(4)] [L(1)= N(SiMe(3))C(Ph)CHC(Ph)N(SiMe(2)CH(2)), L(2)= NC(Ph)CHC(Ph)H, L(3)= N(SiMe(2)CH(2))] depending on the reaction conditions and stoichiometry. The structures of the crystalline complexes 4, 6x21/2(hexane), 5(C(6)D(6)), and have been determined by X-ray crystallography (and have been published).  相似文献   

17.
2-Phosphanylethylcyclopentadienyl lithium compounds, Li[C(5)R'(4)(CH(2))(2)PR(2)] (R = Et, R' = H or Me, R = Ph, R' = Me), have been prepared from the reaction of spirohydrocarbons C(5)R'(4)(C(2)H(4)) with LiPR(2). C(5)Et(4)HSiMe(2)CH(2)PMe(2), was prepared from reaction of Li[C(5)Et(4)] with Me(2)SiCl(2) followed by Me(2)PCH(2)Li. The lithium salts were reacted with [RhCl(CO)(2)](2), [IrCl(CO)(3)] or [Co(2)(CO)(8)] to give [M(C(5)R'(4)(CH(2))(2)PR(2))(CO)] (M = Rh, R = Et, R' = H or Me, R = Ph, R' = Me; M = Ir or Co, R = Et, R' = Me), which have been fully characterised, in many cases crystallographically as monomers with coordination of the phosphorus atom and the cyclopentadienyl ring. The values of nu(CO) for these complexes are usually lower than those for the analogous complexes without the bridge between the cyclopentadienyl ring and the phosphine, the exception being [Rh(Cp'(CH(2))(2)PEt(2))(CO)] (Cp' = C(5)Me(4)), the most electron rich of the complexes. [Rh(C(5)Et(4)SiMe(2)CH(2)PMe(2))(CO)] may be a dimer. [Co(2)(CO)(8)] reacts with C(5)H(5)(CH(2))(2)PEt(2) or C(5)Et(4)HSiMe(2)CH(2)PMe(2) (L) to give binuclear complexes of the form [Co(2)(CO)(6)L(2)] with almost linear PCoCoP skeletons. [Rh(Cp'(CH(2))(2)PEt(2))(CO)] and [Rh(Cp'(CH(2))(2)PPh(2))(CO)] are active for methanol carbonylation at 150 degrees C and 27 bar CO, with the rate using [Rh(Cp'(CH(2))(2)PPh(2))(CO)] (0.81 mol dm(-3) h(-1)) being higher than that for [RhI(2)(CO)(2)](-) (0.64 mol dm(-3) h(-1)). The most electron rich complex, [Rh(Cp'(CH(2))(2)PEt(2))(CO)] (0.38 mol dm(-3) h(-1)) gave a comparable rate to [Cp*Rh(PEt(3))(CO)] (0.30 mol dm(-3) h(-1)), which was unstable towards oxidation of the phosphine. [Rh(Cp'(CH(2))(2)PEt(2))I(2)], which is inactive for methanol carbonylation, was isolated after the methanol carbonylation reaction using [Rh(Cp'(CH(2))(2)PEt(2))(CO)]. Neither of [M(Cp'(CH(2))(2)PEt(2))(CO)] (M = Co or Ir) was active for methanol carbonylation under these conditions, nor under many other conditions investigated, except that [Ir(Cp'(CH(2))(2)PEt(2))(CO)] showed some activity at higher temperature (190 degrees C), probably as a result of degradation to [IrI(2)(CO)(2)](-). [M(Cp'(CH(2))(2)PEt(2))(CO)] react with MeI to give [M(Cp'(CH(2))(2)PEt(2))(C(O)Me)I] (M = Co or Rh) or [Ir(Cp'(CH(2))(2)PEt(2))Me(CO)]I. The rates of oxidative addition of MeI to [Rh(C(5)H(4)(CH(2))(2)PEt(2))(CO)] and [Rh(Cp'(CH(2))(2)PPh(2))(CO)] are 62 and 1770 times faster than to [Cp*Rh(CO)(2)]. Methyl migration is slower, however. High pressure NMR studies show that [Co(Cp'(CH(2))(2)PEt(2))(CO)] and [Cp*Rh(PEt(3))(CO)] are unstable towards phosphine oxidation and/or quaternisation under methanol carbonylation conditions, but that [Rh(Cp'(CH(2))(2)PEt(2))(CO)] does not exhibit phosphine degradation, eventually producing inactive [Rh(Cp'(CH(2))(2)PEt(2))I(2)] at least under conditions of poor gas mixing. The observation of [Rh(Cp'(CH(2))(2)PEt(2))(C(O)Me)I] under methanol carbonylation conditions suggests that the rhodium centre has become so electron rich that reductive elimination of ethanoyl iodide has become rate determining for methanol carbonylation. In addition to the high electron density at rhodium.  相似文献   

18.
Synthesis of the title compounds, viz. [RN(CH2CHR'O)2]2Ge (1, R = Me, R' = H; 2, R = Me, R' = Ph; 3, R = Ph, R' = H), by the reaction of 2 equiv of corresponding dialkanolamines RN(CH2CHR'OH)2 (4, R = Me, R' = H; 5, R = Me, R' = Ph; 6, R = Ph, R' = H) with (AlkO)4Ge is reported. Composition and structures of all novel compounds were established by 1H and 13C NMR spectroscopy and mass spectrometry as well as elemental analysis data. The single-crystal X-ray diffraction of 2 has clearly indicated the presence of two transannular interactions Ge<--N in the compound. N atoms are cis-orientated. The compound 3 possesses long Ge...N distances. The structural data obtained from geometry optimizations by DFT calculations on 1-3 reproduces experimental results. Both cis- and trans-isomers were studied, and cis-configuration was found to be more thermodynamically stable for all three compounds. The transition states for possible cis <--> trans rearrangement processes in 1-3 were calculated. The properties of the Ge-O and Ge<--N bonds in 1-3 were analyzed by the AIM approach. The interactions between the Ge atom and N atoms as well as O atoms possess predominantly ionic character.  相似文献   

19.
This paper reports the organolanthanide-catalyzed intramolecular hydroamination/cyclization of amine-tethered unactivated 1,2-disubstituted alkenes to afford the corresponding mono- and disubstituted pyrrolidines and piperidines using coordinatively unsaturated complexes of the type (eta(5)-Me(5)C(5))(2)LnCH(TMS)(2) (Ln = La, Sm), [Me(2)Si(eta(5)-Me(4)C(5))(2)]SmCH(TMS)(2), and [Me(2)Si(eta(5)-Me(4)C(5))((t)BuN)]LnE(TMS)(2) (Ln = Sm, Y, Yb, Lu; E = N, CH) as precatalysts. [Me(2)Si(eta(5)-Me(4)C(5))((t)BuN)]LnE(TMS)(2) mediates intramolecular hydroamination/cyclization of sterically demanding amino-olefins to afford disubstituted pyrrolidines in high diastereoselectivity (trans/cis = 16/1) and good to excellent yield. In addition, chiral C(1)-symmetric organolanthanide catalysts of the type [Me(2)Si(OHF)(CpR*)]LnN(TMS)(2) (OHF = eta(5)-octahydrofluorenyl; Cp = eta(5)-C(5)H(3); R* = (-)-menthyl; Ln = Sm, Y), and [Me(2)Si(eta(5)-Me(4)C(5))(CpR*)]SmN(TMS)(2) (Cp = eta(5)-H(3)C(5); R* = (-)-menthyl) mediate asymmetric intramolecular hydroamination/cyclization of amines bearing internal olefins and afford chiral 2-substituted piperidine and pyrrolidine in enantioselectivities as high as 84:16 er at 60 degrees C. The substrate of the structure NH(2)CH(2)CMe(2)CH(2)CH=CH(CH(2))(2)CH=CH(2) is regiospecifically bicyclized by [Me(2)Si(eta(5)-Me(4)C(5))((t)BuN)]LnE(TMS)(2) to the corresponding indolizidine skeleton in good yield and high diastereoselectivity. Thermolysis of (eta(5)-Me(5)C(5))(2)LaCH(TMS)(2) in cyclohexane-d(12) at 120 degrees C rapidly releases CH(2)(SiMe(3))(2) and leads to possible formation of fulvene (eta(6)-Me(4)C(5)CH(2)-) species. The thermolysis product readily reverts to active catalysts upon protonolysis by substrate and exhibits the same catalytic activity as the (eta(5),eta(1)-Me(5)C(5))(2)LaCH(TMS)(2) precatalyst at 120 degrees C in the cyclization of cis-2,2-dimethylhept-5-enylamine. Catalytically-active lanthanide-amido complexes (eta(5)-Me(5)C(5))(2)La(NHR)(NH(2)R)(n) and [Me(2)Si(eta(5)-Me(4)C(5))((t)BuN)]Sm(NHR)(NH(2)R)(n) are shown to be thermally robust species.  相似文献   

20.
Organolanthanide complexes of the type Cp'(2)LnCH(SiMe(3))(2) (Cp' = eta(5)-Me(5)C(5); Ln = La, Nd, Sm, Lu) and Me(2)SiCp' '(2)LnCH(SiMe(3))(2) (Cp' ' = eta(5)-Me(4)C(5); Ln = Nd, Sm, Lu) serve as efficient precatalysts for the regioselective intermolecular hydroamination of alkynes R'Ctbd1;CMe (R' = SiMe(3), C(6)H(5), Me), alkenes RCH=CH(2) (R = SiMe(3), CH(3)CH(2)CH(2)), butadiene, vinylarenes ArCH=CH(2) (Ar = phenyl, 4-methylbenzene, naphthyl, 4-fluorobenzene, 4-(trifluoromethyl)benzene, 4-methoxybenzene, 4-(dimethylamino)benzene, 4-(methylthio)benzene), di- and trivinylarenes, and methylenecyclopropanes with primary amines R' 'NH(2) (R' ' = n-propyl, n-butyl, isobutyl, phenyl, 4-methylphenyl, 4-(dimethylamino)phenyl) to yield the corresponding amines and imines. For R = SiMe(3), R = CH(2)=CH lanthanide-mediated intermolecular hydroamination regioselectively generates the anti-Markovnikov addition products (Me(3)SiCH(2)CH(2)NHR' ', (E)-CH(3)CH=CHCH(2)NHR' '). However, for R = CH(3)CH(2)CH(2), the Markovnikov addition product is observed (CH(3)CH(2)CH(2)CHNHR' 'CH(3)). For internal alkynes, it appears that these regioselective transformations occur under significant stereoelectronic control, and for R' = SiMe(3), rearrangement of the product enamines occurs via tautomerization to imines, followed by a 1,3-trimethylsilyl group shift to stable N-SiMe(3)-bonded CH(2)=CMeN(SiMe(3))R' ' structures. For vinylarenes, intermolecular hydroamination with n-propylamine affords the anti-Markovnikov addition product beta-phenylethylamine. In addition, hydroamination of divinylarenes provides a concise synthesis of tetrahydroisoquinoline structures via coupled intermolecular hydroamination/subsequent intramolecular cyclohydroamination sequences. Intermolecular hydroamination of methylenecyclopropane proceeds via highly regioselective exo-methylene C=C insertion into Ln-N bonds, followed by regioselective cyclopropane ring opening to afford the corresponding imine. For the Me(2)SiCp' '(2)Nd-catalyzed reaction of Me(3)SiCtbd1;CMe and H(2)NCH(2)CH(2)CH(2)CH(3), DeltaH() = 17.2 (1.1) kcal mol(-)(1) and DeltaS() = -25.9 (9.7) eu, while the reaction kinetics are zero-order in [amine] and first-order in both [catalyst] and [alkyne]. For the same substrate pair, catalytic turnover frequencies under identical conditions decrease in the order Me(2)SiCp' '(2)NdCH(SiMe(3))(2) > Me(2)SiCp' '(2)SmCH(SiMe(3))(2) > Me(2)SiCp' '(2)LuCH(SiMe(3))(2) > Cp'(2)SmCH(SiMe(3))(2), in accord with documented steric requirements for the insertion of olefinic functionalities into lanthanide-alkyl and -heteroatom sigma-bonds. Kinetic and mechanistic evidence argues that the turnover-limiting step is intermolecular C=C/Ctbd1;C bond insertion into the Ln-N bond followed by rapid protonolysis of the resulting Ln-C bond.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号