首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
A series of new 2D-layered structural rare-earth coordination polymers with the general formal [Ln(C8H4O5)(H2O)5]·(H2O)·(C8H4O5)1/2 (Ln=Eu for (1); Gd for (2); Tb for (3); Dy for (4); and Er for (5)) have been yielded by hydrothermal synthesis. The coordination polymers crystallize in monoclinic space group C/2c with a=19.838(16), b=10.529(8), c=17.752(14) Å, β=107.503(14)° for (1), with a=19.823(7), b=10.552(4), c=17.762(6) Å, β=107.443(6)° for (2), with a=19.770(4), b=10.519(2), c=17.698(4) Å, β=107.52(3)° for (3), with a=19.632(2), b=10.492(2), c=17.617(3) Å, β=107.470(12)° for (4), with a=19.648(7), b=10.480(3), c=17.598(6) Å, β=107.502(6)° for (5), respectively. And the metal ions (Ln3+) are located in nine-member coordination environment. The carboxyl groups from 5-hydroxyisophthalate chelate the metal ions to form 1D helical cation chains. It is interesting that these helical cation chains are arranged to form 2D anion–cation layers by the uncoordinated ligands' anions as template. And the luminescence properties of the rare-earth ions are studied in the paper.  相似文献   

2.
Structures of the following compounds have been obtained: N-(2-pyridyl)-N′-2-thiomethoxyphenylthiourea, PyTu2SMe, monoclinic, P21/c, a=11.905(3), b=4.7660(8), c=23,532(6) Å, β=95.993(8)°, V=1327.9(5) Å3 and Z=4; N-2-(3-picolyl)-N′-2-thiomethoxyphenyl-thiourea, 3PicTu2SeMe, monoclinic, C2/c, a=22.870(5), b=7.564(1), c=16.941(4) Å, β=98.300(6)°, V=2899.9(9) Å3 and Z=8; N-2-(4-picolyl)-N′-2-thiomethoxyphenylthiourea, 4PicTu2SMe, monoclinic P21/a, a=9.44(5), b=18.18(7), c=8.376(12) Å, β=91.62(5)°, V=1437(1) Å3 and Z=4; N-2-(5-picolyl)-N′-2-thiomethoxyphenylthiourea, 5PicTu2SMe, monoclinic, C2/c, a=21.807(2), b=7.5940(9), c=17.500(2) Å, β=93.267(6)°, V=2893.3(5) Å3 and Z=8; N-2-(6-picolyl)-N′-2-thiomethoxyphenylthiourea, 6PicTu2SMe, monoclinic, P21/c, a=8.499(4), b=7.819(2), c=22.291(8) Å, β=90.73(3)°, V=1481.2(9) Å3 and Z=4 and N-2-(4,6-lutidyl)-N′-2-thiomethoxyphenyl-thiourea, 4,6LutTu2SMe, monoclinic, P21/c, a=11.621(1), b=9.324(1), c=14.604(1) Å, β=96.378(4)°, V=1572.4(2) Å3 and Z=4. Comparisons with other N-2-pyridyl-N′-arylthioureas having substituents in the 2-position of the aryl ring are included.  相似文献   

3.
The new host 1,4,11,14-tetramethoxy-dibenzo[b,n]tetraphenylene forms a 1:1 inclusion compound with pyridine, in which a pair of centrosymmetrically-related guest species are enclosed in the cage surrounded by six host molecules. C36H28O4·C5H5N, FW=603.68, triclinic, space group P-1, a=11.796(2), b=16.075(3), c=9.004(2) Å; =98.39(3)°, β=90.01(3)°, γ=108.19(3)°, V=1602.8(5) Å3, Z=2, F(000)=636, Dc=1.251 g/cm3, μ=0.080 mm−1. The final R indices [I>2σ(I)] R1=0.0759, wR2=0.1970 for 5623 MoK observed data.  相似文献   

4.
N-2-(4-picolyl)-N′-2-chlorophenylthiourea, 4PicTu2Cl, monoclinic, P21/c, a=10.068(5), b=11.715(2), β=96.88(4)°, and Z=4; N-2-(6-picolyl)-N′-2-chlorophenylthiourea, 6PicTu2Cl, triclinic, P-1, a=7.4250(8), b=7.5690(16), c=12.664(3) Å, =105.706(17), β=103.181(13), γ=90.063(13)°, V=665.6(2) Å3 and Z=2 and N-2-(6-picolyl)-N′-2-bromophenylthiourea, 6PicTu2Br, triclinic, P-1, a=7.512(4), b=7.535(6), c=12.575(4) Å, a=103.14(3), β=105.67(3), γ=90.28(4)°, V=665.7(2) Å3 and Z=2. The intramolecular hydrogen bonding between N′H and the pyridine nitrogen and intermolecular hydrogen bonding involving the thione sulfur and the NH hydrogen, as well as the planarity of the molecules, are affected by the position of the methyl substituent on the pyridine ring. The enthalpies of fusion and melting points of these thioureas are also affected. 1H NMR studies in CDCl3 show the NH′ hydrogen resonance considerably downfield from other resonances in their spectra.  相似文献   

5.
13C NMR chemical shift data for the -carbon (δ) of a variety of tungsten isopropylimido complexes indicate that the extent to which the nitrogen lone pair participates in multiple bonding to tungsten depends on the form of the complex and the ligands involved. The structures of [W(NCHMe2)Cl4]2·C6H6 (1a) and [W(NCHMe2)Cl5][NEt4] (7) which show widely different δ values, have been determined by single-crystal X-ray diffraction methods. Crytals of 1a are triclinic space group P , with a = 6.394(2), b = 8.890(3), c = 11.205(2) Å and = 109.95(2)°, β = 98.91(2)°, γ = 93.96(2)°; crystals of 7 are orthorhombic, space group Pnma, with a = 13.667(5), b = 15.152(2), c = 9.432(2) Å. Both structures were solved by Patterson and Fourier methods and refined to an R value of 0.050 for 1325 observed data of 1a and to an R value of 0.050 for the 1157 observed data of 7. Complex 1a is dimeric with a W---N bond length of 1.697(12) Å and complex 7 is monomeric with a longer W---N bond length of 1.763(16) Å. Comparison of the W---Cl bond lengths and correlations with π-bonding to make an 18-electron count, indicates that the W---N bond lengths differ in the two complexes as a result of overall π-bonding requirements.  相似文献   

6.
The structures of the title compounds have been established by X-ray crystallography from diffractometer data. Crystals of the first (I), C4H8N4S, are monoclinic, space group P21/c, with a = 8.166(2), b = 10.481(1), c = 8.585(1) Å, β = 109.33(2)°, Z = 4, Dc = 1.381 g cm−3. Crystals of the second (II), C9H10N4S, are monoclinic, space group P21/c, with a = 11.850(4), b = 7.898(1), c = 23.981 (6) Å, β = 117.23(2)°, Z = 8, Dc = 1.373 g cm−3. Crystals of the third (III), C11H14N4S1 are also monoclinic, space group P21/c with a = 12.829(3), b = 8.348(1), c = 11.088(4) Å, β = 94.40(4)°, Z = 4, Dc = 1.314 g cm−3. The structures, determined by direct methods (I, III) and Patterson synthesis (II) were refined to R = 0.039 for 1070 reflections of I, R = 0.040 for 2792 reflections of II and R = 0.041 for 1900 reflections of III. The characteristic features of the planar five-membered rings are studied in comparison with the analogous 1,2,3-triazoles and imidazoles. It is shown that these planar rings exhibit only two patterns of the endocyclic bond angles induced dominantly by the number and relative position of the N-lone pairs. A similar effect of the double bonds (attached to C atoms) is also discussed.  相似文献   

7.
The title calixarene, tetrasodium thiacalix[4]arene tetrasulfonate, was prepared and its crystal structure was determined. Na4[thiacalix[4]arene sulfonate]·9H2O·CH3CH2OH, belongs to triclinic system, space group P , a=10.820(5), b=14.109(6), and c=14.514(6)Å, =99.702(7), β=93.445(8), and γ=93.445(8)°, V=2174.2(16)Å3, Z=2. The title calixarene exists in the solid state as bi-layer of anionic calixarene in the cone configuration. These layers alternate with inorganic regions which contain the sodium cations and the water molecules.  相似文献   

8.
The crystal structures of the complex of 4-methylpyridine with pentachlorophenol (MP-PCP) and its deuterated analogue (MP-PCP-d) were determined at 80 K by X-ray diffraction. The MP-PCP complex crystallizes in the space group P with a = 7.267(7), b = 8.966(9), c = 13.110(14)Å, = 99.70(8), β = 118.16(9), γ = 103.38(8)° and Z = 2 and the MP-PCP-d complex in the monoclinic Cc space group with a = 3.826(2), b = 27.54(2), c = 13.209(12)Å, β = 101.38(9)° and Z = 4. The O… H … N bridge bond distance of 2.515(4) Å is significantly shorter than that determined at room temperature (2.552(4) Å) and the O---D … N bond length of 2.628(6) Å is only slightly shorter than at room temperature (2.638(3) Å). The temperature dependence of the IR spectra confirms the symmetrization of the OHN hydrogen bond.  相似文献   

9.
The crystal structures of the complex of 4-methylpyridine with pentachlorophenol (MP---PCP) and its deuterated analogue (MP---PCP-d) were determined at 80 K by X-ray diffraction. The MP---PCP complex crystallizes in the space group with a = 7.267(7), b = 8.966(9), c = 13.110(14) Å, = 99.70(8), β = 118.16(9), γ = 103.38(8)° and Z = 2 and the MP---PCP-d complex in the monoclinic Cc space group with a = 3.826(2), b = 27.54(2), c = 13.209(12) Å, β = 101.38(9)° and Z = 4. The O…H…N bridge bond distance of 2.515(4) Å is significantly shorter than that determined at room temperature (2.552(4) Å) and the O---D…N bond length of 2.628(6) Å is only slightly shorter than at room temperature (2.638(3) Å). The temperature dependence of the IR spectra confirms the symmetrization of the OHN hydrogen bond.  相似文献   

10.
Irena Szczygiel   《Thermochimica Acta》2001,370(1-2):125-128
The phase diagram of the system CePO4–K3PO4 has been determined based on investigations by differential thermal analysis, X-ray powder diffraction, IR spectroscopy and optical microscopy. The system contains only one intermediate compound K3Ce(PO4)2, which melts incongruently at (1500±20)°C. This compound is stable down to room temperature and exhibits a polymorphic transition at 1180°C. It was confirmed that the low-temperature form β-K3Ce(PO4)2 crystallizes in a monoclinic system, space group P21/m with unit cell parameters a=9.579 (5), b=5.634 (6), c=7.468 (5) Å; =γ=90°, β=90.81 (3)°; V=403.083 Å3.  相似文献   

11.
1,2:5,6:9,10:13,14-Tetrabenzo-3,7,11,15-tetradehydro[16]annulene, or tetrabenzocyclyne (QBC) and 1,2:5,6:9,10:13,14:17,18:21,22-hexabenzo-3,7,11,15,19,23-hexadehydro[24]annulene (HBC) have been structurally characterized by X-ray. crystallography. QBC crystallizes in two different space groups; P21/c with a = 10.652(3) Å, b = 10.624(2) Å, c = 19.549(4) Å, β = 93.83(2)°, V = 2207.4(8) Å3, and Z = 4 and P41212 with a = 9.330(1) Å, c = 25.497(8) Å, V = 2219.6(12) Å, and Z = 4. HBC crystallizes in monoclinic P21/n with a = 14.763(3) Å, b = 10.296(2) Å, c = 22.057(4) Å, β = 108.61(3), V = 3177.4(11) Å3, T = 133 K, and Z = 4. Reaction of QBC with dicobaltoctacarbonyl has produced a tetracobalt complex which has been characterized by X-ray crystallography. This complex crystallizes in monoclinic P21/c with a = 14.699(3) Å, b = 17.188(3) Å, c = 17.254(3) Å, β = 112.63(3)°, V = 4023.5(13) Å3, and Z = 4. Only two of the four C---C triple bonds of QBC bind to dicobalthexacarbonyl moieties even when excess dicobaltoctacarbonyl is used.  相似文献   

12.
A number of isomeric N-benzylbenzalimine palladium(II) complexes of the type [P ·CH2Ph]2 (with C=N endo to the palladocycle) and [P =C(CH3Ph]2 (with C=N exo to the palladocycle), have been prepared and charcterised by 1H and 13C NMR methods. The crystal structures of two analogous monomeric acac complexes, synthesized independently by oxidative addition of o-BrC6H4CH2N=CH · Ph to Ph to Pd(dibenzylideneacetone)2 have also been determined. These are [P · CH2Ph)] (15a) and [P =CHPh)] (20a). Crystals of 15a are monoclinic, space group P21/a with Z = 4 in a cell of dimensions a 10.286(2), b 11.902(3), c 13.895(5) Å, β 93.52(2)° while 20a is monoclinic, space group P21/c with Z = 8 and a 10.353(3), b 20.600(5), c 16.545(7) Å, β 92.14(3)°. The structures 15a and 20a were refined to residuals R = 0.041 and 0.055 for 1661 and 2525 observed reflections respectively.  相似文献   

13.
The pyrazole derivatives of aminoethane N,N-bis(3,5-dimethyl-1-pyrazolyl- methyl)aminoethane (aebd) and N,N-bis(1-pyrazolylmethyl)aminoethane (aebp) form co- ordination compounds with copper(I) of stoichiometry [Cu(L)X], with X = Cl, Br, I and SCN, and [Cu(L)2X], with X = CF3SO3 and BF4. The ligands chelate in a bidentate manner, with only the pyrazole groups coordinating. The crystal structures of two representative examples have been determined: [Cu(aebp)Cl]2 is triclinic, space group P , with a = 8.711(2), b = 9.351(1) and c = 9.528(1) Å, = 68.57(1)°, β = 61.47(1)° and γ = 77.82(1)°, and Z = 2. Standard least-squares refinement gave R = 0.029 (Rw = 0.038) for 1804 reflections. [Cu(aebp)2]CF3SO3 is monoclinic, space group P21/n, with a = 13.352(5), b = 14.663(3) and c = 15.752(4) Å, β = 117.49(3)°, and Z = 4. Standard least-squares refinement gave R = 0.029 (Rw = 0.032) for 1786 reflections. In both cases the copper environment is slightly-distorted tetrahedral. The chloride compound is dimeric with one ligand molecule (Cu---N distances of 2.011(2) and 2.047(2) Å) and two bridging chlorides per copper (Cu---Cl distances of 2.3874(8) and 2.4094(8) Å). With the non- coordinating triflate anion, a monomeric compound with two ligand molecules per copper was obtained (Cu---N distances of 2.018(4), 2.028(4), 2.049(4) and 2.050(4) Å).  相似文献   

14.
The crystal structures of pharmaceutical product mesalazine (marketed also under different proprietary names as Salofalk, Asacol, Asacolitin, and Claversal) and its hydrochloride are reported. In the crystal mesalazine is in zwitterion form as 5-ammoniosalicylate (1) whereas mesalazine hydrochloride crystallizes in an ionized form as 5-ammoniosalicylium chloride (2). Compound 1 (C7H7O3N) crystallizes in the monoclinic space group P21/n with a = 3.769(1) Å, b = 7.353(2) Å, c = 23.475(5) Å, β = 94.38(2)°, V = 648.7(8) Å3, Z = 4, Dc = 1.568 g cm−3 and μ(MoK) = 1.2 cm−1. Compound 2 (C7H8O3NCl) crystallizes in the triclinic space group P with a = 4.4839(2) Å, b = 5.7936(2) Å, c = 15.6819(5) Å, = 81.329(3)°, β = 88.026(3)°, γ = 79.317(4)°, V = 395.74(3) Å3, Z = 2, Dc = 1.591 g cm−3 and μ(CuK) = 40.8 cm−1. The crystal structures were solved by direct methods and refined to R = 0.041 for 1 and 0.028 for 2, using 607 and 1374 observed reflections, respectively. The configuration of both molecules, with the ortho hydroxyl to a carboxyl group, favours the intramolecular hydrogen bonds. Very complex systems of intermolecular hydrogen bonds were observed in both crystal packings. They are discussed in terms of graph-set notation. The mesalazine crystal structure is characterized by two-dimensional network of hydrogen bonds in the ab plane. The crystal structure pattern of mesalazine hydrochloride is a three-dimensional network significantly supported by N+---HCl interactions.  相似文献   

15.
The XeOSeF5+ cation has been synthesized for the first time and characterized in solution by 19F, 77Se and 129Xe NMR spectroscopy and in the solid state by X-ray crystallography and Raman spectroscopy with AsF6 as its counter anion. The X-ray crystal structures of the tellurium analogue and of the Xe(OChF5)2 derivatives have also been determined: [XeOChF5][AsF6] crystallize in tetragonal systems, P4/n, a=6.1356(1) Å, c=13.8232(2) Å, V=520.383(14) Å3, Z=2 and R1=0.0453 at −60°C (Te) and a=6.1195(7) Å, c=13.0315(2) Å, V=488.01(8) Å3, Z=2 and R1=0.0730 at −113°C (Se); Xe(OTeF5)2 crystallizes in a monoclinic system, P21/c, a=10.289(2) Å, b=9.605(2) Å, c=10.478(2) Å, β=106.599(4)°, V=992.3(3) Å3, Z=4 and R1=0.0680 at −127°C; Xe(OSeF5)2 crystallizes in a triclinic system, , a=8.3859(6) Å, c=12.0355(13) Å, V=732.98(11) Å3, Z=3 and R1=0.0504 at −45°C. The energy minimized geometries and vibrational frequencies of the XeOChF5+ cations and Xe(OChF5)2 were calculated using density functional theory, allowing for definitive assignments of their experimental vibrational spectra.  相似文献   

16.
Triphenyltelluronium hexachloroplatinate (1), hexachloroiridate (2), tetrachloroaurate (3), and tetrachloroplatinate (4) were prepared from Ph3TeCl and potassium salts of the corresponding anions. Upon recrystallization of 4 from concentrated nitric acid, K2[PtCl6] and (Ph3Te)(NO3)·HNO3 (5) were obtained. The crystal structures of 1–3 and 5 are reported. Compounds 1 and 2 are isostructural. They are triclinic, P , Z=2 (the asymmetric unit contains two formula units). Compound 1: a=10.7535(2), b=17.2060(1), c=21.4700(3) Å, =78.9731(7), β=77.8650(4), γ=78.8369(4)°. Compound 2: a=10.7484(2), b=17.1955(2), c=21.4744(2) Å, =78.834(1), β=77.649(1), γ=78.781(1)°. Compound 3 is monoclinic, P21/c, Z=4, a=8.432(2), b=14.037(3), c=17.306(3) Å, β=93.70(3)°. Compound 5 is monoclinic. P21/n, Z=4, a=9.572(2), b=14.050(3), c=13.556(3) Å, β=90.76(3)°. The primary bonding in the Ph3Te+ cation in each salt is a trigonal AX3E pyramid with Te---C bond lengths in the range 2.095(8)–2.14(2) Å and the bond angles 94.1(6)–100.9(5)°. The weak TeCl (1–3) and TeO (5) secondary interactions expand the coordination sphere. In 1 and 2 the cation shows a trigonal bipyramidal AX3YE coordination with one primary Te---C bond and the shortest secondary TeCl contact in axial positions and the two other Te---C bonds and the lone-pair in equatorial positions. The cation in 3 shows a distorted octahedral AX3Y3E environment and that in 5 is a more complex AX3Y3Y′2 arrangement. In both latter salts the structure is a complicated three-dimensional network of cations and anions.  相似文献   

17.
An improved synthesis of 2,2′-bis(1-indenyl)propane and the corresponding ansa-complexes of zirconium are reported. Synthesis of a mixture of rac- and meso-2,2′-propylidene-bis(1-indenyl)zirconium dichlorides involves a treatment of ZrCl4 with bis[3-(trialkyltin)inden-1-yl]propane, where alkyl = ethyl, butyl, in toluene. This reaction gives the products in 92% yield and might be a convenient synthetic pathway to a number of straightforward ansa-metallocenes. Both rac- and meso-2,2′-propylidene-bis(1-indenyl)zirconium dichlorides were separated and isolated using simple work-up processes, and characterized by X-ray crystal structure analysis (rac:C2/c; a = 15.903(3) Å, b = 11.105(2) Å and c = 11.520(2) Å; β = 121.61(3)°; Z = 4; V = 1732.6(5) Å3; R = 0.0350; meso-: P1¯; a = 9.739(2) Å, b = 12.798(4) Å and c = 15.322(4) Å; = 101.18(2)°; β = 121.61(2)°; γ = 90.54(2)°, Z = 4; V = 1795.4(8) Å3; R = 0.0417).  相似文献   

18.
Condensation of thiosemicarbazide or N(4)-ethylthiosemicarbazide with 1,2,8,9-tetraphenyl-3,7-diazanona-1,9-dione in the presence of copper(II) acetate in 96% ethanol leads to Δ6-5,6-diphenyl-5-methoxy-1,2,4-triazacyclohexene-3-thione, C16H15N3OS, or Δ6-4-methyl-5,6-diphenyl-5-ethoxy-1,2,4-triazacyclohexene-3-thione, C18H19N3OS. For C16H15N3OS the crystal data are monoclinic, P21/c, a=9.7780(7), b=8.5120(3), c=18.2210(13) Å, β=100.958(3)°, V=1488.89(16) Å3, and Z=4 in agreement with an earlier report. For C18H19N3OS the crystal data are orthorhombic, P212121, a=8.6940(3), b=12.9946(3), c=15.5139(5) Å, V=1752.68(9) Å3, and Z=4.  相似文献   

19.
The structures to two 1,3-thiazine derivatives differing only in the number of CH2 groups in their trans fused hydrocarbon ring (n = 3 for I and n = 4 for II) have been established by X-ray crystallography from diffractometer data. Crystals of I (trans-5,6- trimethylene-5,6-dihydro-2-phenyl-[4H] - 1,3-thiazine) are triclinic, space group P with a = 7.661(1), b = 8.282(1), c = 9.566(2) Å, = 91.75(1), β = 100.72(1), γ = 105.45(1)° Z = 2, Dc = 1.260 g cm-3. Crystals of II (trans-5,6-tetramethylene-5,6-dihydro-2-phenyl [4H]-1,3-thiazine) are monoclinic, space group P21/c with a = 7.914(2), b = 19.362(13), c = 8.440(1) Å, β = 109.16(2)°C Z = 4, Dc = 1.258 g cm-3. The structures determined by Patterson (I) and direct (II) methods were refined to R = 0.050 for 1330 reflections of I and R = 0.082 for 1012 reflections of II. The proper treatment of the positional disorder of the carbon atoms (C(5) and C(6)) forming the trans ring junction in I discovered two discrete conformations with a ratio of 1:2. The opposite chirality of atoms C(51) and C(52), and C(61) and C(62), indicates a simultaneous configurational disorder with a pattern of total disorder: A A . The puckering parameters of the hetero rings in the same enantiomers of molecules IA, IB and II indicate a connection between the conformers: 5E(II)→5H6(IB)→E6IA) via pseudorotation. Their relationship is discussed and compared with the conformational freedom of the analogous 1,3-oxazine derivatives.  相似文献   

20.
The ionic adduct of 2,6-dichloro-4-nitrophenol with 4-formylpyridine (which transforms into 4-dihydroxymethylpyridine), crystallizes in the space group P21/c with a = 12.264(2), b = 6.730(1), c = 16.731(3) Å, β = 99.46(3)° and Z = 4. Relatively long N+---HO hydrogen bonds (RN = 2.683(3) Å are formed with strongly asymmetric location of the H-atom. This is well reflected both in IR and UV-VIS spectra. One of the gem diol OH group is attached to the phenolate oxygen atom and the second is engaged in the formation of infinite polyanionic chains via O---HO hydrogen bonds between OH groups.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号