首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A quantitative study of the reflection of the T(0,1) mode from defects in pipes in the frequency range 10-300 kHz has been carried out, finite element predictions being validated by experiments on selected cases. Both cracklike defects with zero axial extent and notches with varying axial extents have been considered. The results show that the reflection coefficient from axisymmetric cracks increases monotonically with depth at all frequencies and increases with frequency at any given depth. In the frequency range of interest there is no mode conversion at axisymmetric defects. With nonaxisymmetric cracks, the reflection coefficient is a roughly linear function of the circumferential extent of the defect at relatively high frequencies, the reflection coefficient at low circumferential extents falling below the linear prediction at lower frequencies. With nonaxisymmetric defects, mode conversion to the F(1,2) mode is generally seen, and at lower frequencies the F(1,3) mode is also produced. The depth and circumferential extent are the parameters controlling the reflection from cracks; when notches having finite axial extent, rather than cracks, are considered, interference between the reflections from the start and the end of the notch causes a periodic variation of the reflection coefficient as a function of the axial extent of the notch. The results have been explained in terms of the wave-number-defect size product, ka. Low frequency scattering behavior is seen when ka < 0.1, high frequency scattering characteristics being seen when ka > 1.  相似文献   

2.
The semianalytic methods developed for solving the problems of elastodynamic diffraction by a horizontal strip-like crack are used to analyze the transmission and reflection of Rayleigh waves in a half-plane and normal modes in a layer with the aim to determine the parameters of blocking and study the blocking mechanism. The resonance blocking is shown to be accompanied by energy localization near the crack. For the case of a crack in a half-plane, a possibility of nonresonance blocking is revealed. The transmission and reflection coefficients are analyzed as functions of frequency, crack size, and crack depth. Numerical examples of energy streamline and power distribution structures are given for the resonance and nonresonance blocking, as well as examples of the behavior of stress intensity factors at the crack tips.  相似文献   

3.
The interaction of surface acoustic waves with finite-size, surface-breaking, semi-circular cracks is studied numerically, and experimentally. We focus on the behavior of the reflection coefficient of the Rayleigh wave from such cracks in the far field of the crack, when the depth of the crack is comparable to the wavelength of the interrogating surface wave. The cases in which the depth of the crack is much smaller or much larger compared to the wavelength have been extensively investigated by many authors and are not considered here except for validating the numerical and experimental results in these regimes. The theoretical, finite element, and experimental results presented are in very good agreement over the range were the crack depth is much smaller or much larger compared to the wavelength of the incident Rayleigh wave. In the transition regime, between these two limiting cases, only the finite element and experimental data show good agreement since the theoretical predictions are no longer applicable. In the high crack depth to wavelength ratio (a/lambda(R)) regime, the finite element and experimental results close to the crack approach the limiting value of the reflection coefficient from a 90 degrees corner.  相似文献   

4.
In this paper, the propagation of time-harmonic torsional waves in composite elastic cylinders is investigated. An imperfect interface is considered where tractions are continuous across the interface and the displacement jump is proportional to the stress acting on the interface. A frequency equation is derived for the rod and dispersion curves of normalized frequency as a function of normalized wave number for elastic bimaterials with varying values for the interface constant F are presented. The analysis is shown to recover the dispersion curves for a bimaterial rod with a perfect (welded) interface (F = 0), and has the correct limiting behavior for large F. It is shown that the modes, at any given frequency, are orthogonal, and it is outlined how the problem of reflection of a torsional mode by a planar defect (such as a circumferential crack) can be treated.  相似文献   

5.
表面垂直裂痕诱发瑞利波散射的数值分析   总被引:3,自引:1,他引:2       下载免费PDF全文
激光激发的声表面波为材料表面缺陷的检测提供了有力的工具.针对含缺陷材料在模型边界上的复杂性,建立了基于平面应变的有限元模型并选取了相同厚度但含有不同深度的表面裂痕的单层铝板进行了对比计算,得到了声表面波经过不同深度的表面裂痕时产生的反射及透射信号波形的时域特征.进而引入了基于Wigner-Ville分布理论的时-频分析方法计算裂痕前、后散射的瞬态表面波的能量在时间-频率平面内分布的情形.结果显示:声表面波接近中心频率的某一频率成分在经过深度小于其中心波长的表面缺陷时,随着裂痕深度的增加,对应于该频率的反射系数呈现单调递增的趋势;而透射系数呈现递减的特征,这一结果可以为激光超声检测表面缺陷提供一种定量的表征手段.  相似文献   

6.
A new method for deconvolution of ultrasonic pulse-echo measurements employing multiple-transducer setup is proposed in the paper. An optimal way of estimating the material reflection sequence for a linear signal generation model using maximum a posteriori estimation is proposed. The method combines the measurements from a number of transducers covering different frequency bands yielding an optimal estimate of the reflection sequence. The main idea of this approach is to complement the information unavailable from one transducer in some frequency bands with the information from the other transducers. The method is based on the assumption that the measurements are performed using transducers with identical apertures and apodization, which are located exactly at the same position relative to the test object during the measurement. An error analysis presented in the paper proves that when the above assumptions are fulfilled, the proposed method, by utilizing more data for estimation, consistently yields more accurate reflection sequence estimates than the classical Wiener filter. Experimental evidence is presented using both simulated and real ultrasonic data as a verification of the correctness of the multiple-transducer model and the estimation scheme. An illustration of the advantages of the method is also given using real ultrasonic data.  相似文献   

7.
An energy-based numerical model is developed to investigate the influence of cracks on structural dynamic characteristics during the vibration of a beam with open crack(s). Upon the determination of strain energy in the cracked beam, the equivalent bending stiffness over the beam length is computed. The cracked beam is then taken as a continuous system with varying moment of intertia, and equations of transverse vibration are obtained for a rectangular beam containing one or two cracks. Galerkin's method is applied to solve for the frequencies and vibration modes. To identify the crack, the frequency contours with respect to crack depth and location are defined and plotted. The intersection of contours from different modes could be used to identify the crack location and depth.  相似文献   

8.
The effect of temperature on sound wave absorption in a sediment layer   总被引:2,自引:0,他引:2  
The effect of temperature on sound velocity, absorption, and reflection coefficient in the seabed sediment layer is investigated. Experimental measurements of sound speed, absorption, and the reflection coefficient in a sandy sediment layer have been carried out at several temperatures. An absorption reduction of 75 dB/m and a velocity increase of 65 m/s have been measured at a frequency of 1 MHz when the temperature increases from 5 to 25 degrees C. Because of the absorption temperature dependence the amplitude of the reflected wave from the back surface of the sub-bottom layer after going back and forth across the layer increases with the temperature.  相似文献   

9.
The detection of thin embedded layers using normal incidence ultrasound   总被引:1,自引:0,他引:1  
A theoretical investigation of the use of normal incidence ultrasonic reflection measurements for the detection and characterization of thin layers embedded between two much thicker media has been carried out. It has been shown that the form of the relationship between the normal incidence longitudinal reflection coefficient and frequency is defined by the reflection coefficients at zero frequency and at half the resonance frequency of the layer. The reflection coefficient at zero frequency is solely a function of the impedances of the media on either side of the layer, while that at half the resonance frequency of the layer is a function of the impedances of all three media. In general, the sensitivity of the reflection coefficient to the presence of the layer increases as the product of frequency and layer thickness increases, the maximum sensitivity being at half the resonance frequency of the layer. Unfortunately, with thin layers, it is generally not practical to test at this frequency. However, the reflection coefficient curve can, in principle, be reconstructed from data measured at lower frequencies and the sensitivity of the reflection coefficient at lower frequencies to the characteristics of the layer can be predicted from the sensitivity at half the resonance frequency. The sensitivity is also critically dependent on the relative impedances of the three media and is generally greatest when the half spaces on either side of the layer have the same impedance. With favourable impedances, it is possible to detect layers whose thickness is a small fraction of the wavelength of the ultrasonic waves employed. However, with other combinations of impedances, the detection of much thicker layers is not possible.  相似文献   

10.
An asymptotic theory describing the propagation of plane waves in a variable cross-section ear canal is combined with pressure measurements in order to determine the energy reflection coefficient at the eardrum and the standing wave patterns along the length of the canal. The relative phase of the reflected wave, and the cross-sectional area function of the ear canal, are also determined from the noninvasive pressure measurements. The theory is based on a high-frequency multiscale solution of the one-dimensional horn equation and is shown to agree well with the phase and amplitude of experimental measurements in human replica ear canals.  相似文献   

11.
Abstract

Contact stresses in high pressure multi-layer cylinders are sometimes measured using ultrasonic technique. As a measure of the contact stresses the coefficient of reflection of ultrasonic waves from the contact interface between two adjacent outer layers is applied. The coefficient of reflection is an involved function of several parameters. Experimental and theoretical investigations show that this function may change non-monotonously with frequency of ultrasonic waves which may lead to an ambiguity of the assumed criterion. In order to check this function for higher frequencies, measurements of the reflection coefficient from a contact interface between plane steel samples were made for the frequencies up to 190 MHz.  相似文献   

12.
Interaction of the fundamental shear horizontal mode with through-thickness cracks in an isotropic plate is studied in the context of low frequency array imaging for ultrasonic guided wave nondestructive evaluation with improved resolution. Circular wave fronts are used and the symmetric case where a line from the wave source bisects the crack face normally is considered. Finite element simulations are employed to obtain trends subject to analytical and experimental validation. The influence of the crack length and of the location of source and measurement positions on the specular reflection from the crack face is first examined. These studies show that low frequency short range scattering is strongly affected by diffraction phenomena, leading to focusing of energy by the crack in the backscatter direction. Study of the diffraction from the crack edges reveals contributions due to a direct diffraction at the edges and multiple reverberations across the crack length. A simple diffraction model is shown to adequately represent cracks up to moderate lengths, providing an easy means of estimating the far field of the waves. The presence of multiple diffraction components is quantitatively established and surface waves on the crack face are identified as equivalent to low frequency symmetric modes of rectangular ridge waveguides.  相似文献   

13.
The fictitious notch rounding concept has been recently applied for the first time to V-notches with root hole subjected to in-plane mixed mode loading. Out-of-bisector crack propagation is taken into account. The fictitious notch radius is determined as a function of the real notch radius (the microstructural support length) and the notch opening angle. Due to the complexity of the problem, a method based on the simple normal stress failure criterion has been used. It is combined with the maximum tangential stress criterion to determine the crack propagation angle. An analytical method based on Neuber’s procedure has been developed. The method provides the values of the microstructural support factor as a function of the mode ratio and the notch opening angle. The support factor is considered to be independent of the microstructural support length. Finally, for comparison, the support factor is determined on a purely numerical basis by iterative analysis of finite element models. The present paper is aimed to give a brief overview of the recent findings on this challenging topic making clear the state of the art.  相似文献   

14.
Analytical solutions of Lamb functions for symmetric and antisymmetric elastodynamic modes propagating within a solid layer embedded in an infinite medium are presented. Alternative theoretical analyses of such modes are performed, first in terms of the usual approach of harmonic heterogeneous plane waves (real frequency and complex slowness) and then in terms of transient homogeneous plane waves (complex frequency and real slowness). An example structure of a 0.1-mm-thick "alpha case" (an oxygen-rich phase of titanium that is relatively stiff) plate embedded in titanium is used for the study. A large difference between the usual dispersion curves calculated in real frequency and complex slowness and those calculated in complex frequency and real slowness is shown. Thus the choice between a spatial and a temporal parameter to describe the imaginary part of the guided waves is shown to be significant. The minima and the zeros of the longitudinal and shear plane-wave reflection coefficients are calculated and are compared with the dispersion curves. It is found that they do not match with the dispersion curves for complex slowness, but they do agree quite well with the dispersion curves for complex frequency. This implies that the complex frequency approach is better suited for the comparison of the modal properties with near-field reflection measurements.  相似文献   

15.
This paper deals with the mass operator representing multiple-scattering effects in the theory of wave scattering from a slightly random surface. By means of the stochastic-functional approach, a recurrence equation for the mass operator is obtained in the form of an iterative integral. However, its solution oscillates in a non-physical manner against the number of iterations. Next, the recurrence equation may be regarded as a nonlinear integral equation, when the number of iterations goes to infinity. An analytical solution of the nonlinear integral equation is presented for a special case in which the roughness spectrum is the Dirac delta function. Then, the nonlinear integral equation is solved numerically for the Gaussian roughness spectrum by iteration, starting from such an analytical solution. It is shown that only a few iterations are required to obtain the mass operator, even when the correlation distance is small. Effects of the mass operators on the coherent reflection coefficient and the incoherent scattering cross section are calculated and shown in figures.  相似文献   

16.
We consider the possibilities of using a broadband noise signal to measure the moisture of low-salinity soils in the presence of groundwater. We estimate the dependence of the dielectric permittivity of a soil in the meter-wavelength range (P-band) on the wavelength and salinity. We obtain an approximate expression for determination of the sounding depth and formulate requirements for the frequency band to reduce the effect of reflection from groundwater. The results of experimental measurement of the dependence of the reflection coefficient of low-salinity soils on the moisture at a frequency of 300 MHz are presented. It is found that the reflection coefficient correlates well with the soil moisture in a near-surface layer of thickness about 60 cm. It is shown that under such conditions, the use of wavelengths greater than 1-1.5 m for determination of the soil moisture is not reasonable.  相似文献   

17.
A study of the interaction of the S0 Lamb wave with a circular through-thickness hole in a plate is presented. The study is limited to the nondispersive frequency range of this wave, in which the distributions of stress and displacement are simple. This allows a Finite Element analysis to be undertaken using a two-dimensional membrane discretization. Predictions of the direct reflection of the S0 mode and the lateral scattering of the SH0 mode are made for a range of diameters of the hole. At the same time, an analytical solution based on modal superposition is developed, and this is also used to predict the reflection and scattering coefficients. Both sets of predictions are validated by experimental measurements. It is found that the trends of the reflection coefficients for different hole diameters, frequencies and distances from the hole satisfy a simple normalization. On a detailed scale, the functions exhibit undulations which are shown to result from the interference of the direct reflection with secondary reflections which arrive slightly later.  相似文献   

18.
The spectral shape of noise emissions from a 35-GHz gyroklystron input cavity is used to directly measure the cavity resonant frequency and quality factor under beam-loaded conditions. The quality factors obtained with this technique at a number of magnetic fields are found to be consistent with quality factors obtained from reflection coefficient measurements made at the identical operating points. The measured variation in quality factor is used to identify various regimes of operation based on input cavity coupling. Comparisons between the measurements and simulations are in good agreement in resonant frequency, but moderate discrepancies in quality factor exist  相似文献   

19.
The possibility of measuring the ultrasound attenuation coefficient and its frequency dependence in a one-side accessible medium is considered under the assumption that the medium contains reflectors with unknown reflection coefficients and the measurements are performed in the reflection geometry. The possibility of measuring the reflection coefficients themselves is indicated. All the above parameters can be measured even when the reflector has the form of a layered structure.  相似文献   

20.
The determination of a pipe bore from the measured reflection function is a technique that has reached a certain maturity. However, the measurement of the reflection function in the time domain (pulse reflectometry) requires equipment that is rather difficult to operate. On the other hand, the techniques for measuring the input impedance have reached an unquestionable maturity with respect to measurement setup and to calibration. It is thus likely that impedance measurements might be able to give the same information. By doing simulations, it is first shown that the reflection function deduced from the input impedance gives access to the bore with a precision comparable with that obtained with pulse reflectometry. It is then shown that the accuracy obtained with measurements is of the same order as that obtained from simulations. The technique is then used for the dimensional inspection of bassoon crooks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号