首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A novel inherently conducting polymer, high‐quality polyphenanthrene (PPh) films were synthesized electrochemically by direct anodic oxidation of phenanthrene (Ph) in boron trifluoride diethyl etherate (BFEE) containing a certain amount of trifluoroacetic acid (TFA). The oxidation potential of Ph in this medium was measured to be only 0.63 V versus SCE, which was greatly lower than that determined in acetonitrile + 0.1 mol L?1 Bu4NBF4 (1.55 V vs. SCE). The electrolytes of BFEE containing TFA enable facile anodic oxidation of Ph monomer; however, similar oxidation using acetonitrile never produces such a polymeric material. PPh films obtained from this medium showed good redox activity and stability even in concentrated sulfuric acid. Dedoped PPh films were partly soluble in polar solvent such as CH2Cl2, acetone, tetrahydrofuran, and dimethyl sulfoxide. Fluorescent spectral studies indicate that PPh is a good blue‐light emitter. The structure and morphology of the polymer were studied by UV–vis spectroscopy, FTIR spectroscopy, 1H NMR spectroscopy, and scanning electron microscopy, respectively. The results of quantum chemistry calculations of Ph monomer and the spectroscopies of dedoped PPh indicated the polymerization mainly occurred at C(9) and C(10) positions. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 3929–3940, 2007  相似文献   

2.
Free‐standing poly(dibenzofuran) (PDBF) films were synthesized electrochemically by direct anodic oxidation of dibenzofuran in mixed electrolytes of boron trifluoride diethyl etherate (BFEE) containing certain amount of trifluoroacetic acid (TFA). The oxidation potential of dibenzofuran in pure BFEE was measured to be only 1.31 V versus saturated calomel electrode (SCE). This value was much lower than that determined in acetonitrile + 0.1 mol L?1 TBATFB (2.14 V vs. SCE). The addition of TFA to BFEE can further decrease the oxidation potential of the monomer to 1.07 V versus SCE in the mixed electrolyte of BFEE + 30% TFA. PDBF films obtained from this medium showed good electrochemical behavior, good electrochromic properties, and good thermal stability with conductivity of 100 S cm?1. FTIR and 1H NMR spectra showed that the polymer was grown mainly via the coupling of the monomer at C(3) C(10) or C(4) C(9) positions (Scheme 1). As‐formed PDBF films were partly soluble in tetrahydrofuran (THF) or chloroform. Fluorescent spectral studies indicated that either soluble or PDBF in solid state was a good blue light PDBF emitter. To the best of our knowledge, this is the first report that free‐standing PDBF films can be electrodeposited. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 1125–1135, 2006  相似文献   

3.
High‐quality poly(diphenyl ether) (PDPE) films with electrical conductivity of 4.4 × 10?1 S cm?1 were synthesized electrochemically by direct anodic oxidation of diphenyl ether (DPE) in boron trifluoride diethyl etherate (BFEE) containing 5% concentrated sulfuric acid (SA) (by volume). The oxidation potential onset of DPE in pure BFEE was measured to be only 1.37 V versus a saturated calomel electrode (SCE), which was much lower than that determined in acetonitrile + 0.1 mol L?1 tetrabutylammonium tetrafluoroborate (1.98 V vs. SCE). The addition of SA to BFEE can further decrease the oxidation potential onset of the monomer to 1.18 V versus SCE in the mixed electrolyte of BFEE + 5% SA. PDPE films obtained from this medium showed good redox activity and stability even in concentrated SA. Dedoped PDPE films were partly soluble in the strong polar organic solvent dimethyl sulfoxide. Fluorescent spectral studies indicated that soluble PDPE was a good blue‐light emitter with a quantum yield of 0.30. Infrared spectroscopy and quantum chemistry calculations indicated that the electropolymerization of DPE occurred mainly at C4 and C4′. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 5932–5941, 2007  相似文献   

4.
High-quality free-standing poly(5-methoxyindole) (P5MIn) films were synthesized electrochemically by direct anodic oxidation of 5-methoxyindole (5MIn) in boron trifluoride diethyl etherate (BFEE). P5MIn films obtained from this medium showed good electrochemical behavior and good thermal stability with a conductivity of 0.12 S cm−1. P5MIn films were insoluble in water, acetone and tetrahydrofuran. The structure of the polymer was studied by UV–visible spectroscopy and FT-IR spectroscopy, which indicated that the polymerization occurred at C(2) and C(3) position. Fluorescent spectral studies indicate that solid P5MIn film is a good blue emitter. Thermal stability of P5MIn film is higher than poly(5-methylindole) and poly(5-chloroindole) obtained from BFEE. To the best of our knowledge, this is the first report on the electrosyntheses of free-standing P5MIn films.  相似文献   

5.
Polythieno[3,2-b]thiophene (PTT) was electrosynthesized by facile anodic oxidation of thieno[3,2-b]thiophene (TT) in three systems: boron trifluoride diethyl etherate (BFEE), acetonitrile (ACN), and dichloromethane solutions. The onset oxidation potential of TT in BFEE was determined to be 0.62?V vs. Ag/AgCl, which was much lower than those in ACN and dichloromethane solutions. PTT films exhibited excellent electrochemical property, high thermal stability, good redox activity, and stability. Free-standing PTT films with good mechanical property can be obtained from BFEE solution, whose structure and morphology were characterized by FT-IR, UV?Cvisible spectra, and scanning electron microscopy. With an electrical conductivity of 1.5?S?cm?1 and a Seebeck coefficient of 85???V?K?1 at 306?K, the as-prepared free-standing PTT films showed a certain thermoelectric property. The dimensionless figure-of-merit of PTT films was estimated to be 2.3?×?10?3 at 306?K, which was much higher than those of some organic thermoelectric materials reported previously. All these results indicated that PTT films may have potential applications in the thermoelectric field.  相似文献   

6.
High-quality free-standing poly(dibenzo-18-crown-6) (PDBC) films with a conductivity of 4.1 × 10−2 S cm−1 and good thermal stability were synthesized electrochemically on stainless steel electrode by direct anodic oxidation of dibenzo-18-crown-6 (DBC) in pure boron trifluoride diethyl etherate (BFEE). In this medium, the oxidation potential onset of DBC was measured to be only 0.98 V vs. SCE, which was much lower than that in acetonitrile + 0.1 mol L−1 Bu4NBF4 (1.45 V vs. SCE). PDBC films obtained from this medium showed good redox activity and stability in BFEE. The structural characterization of PDBC was performed using UV-vis, FTIR spectroscopy. The results of quantum chemistry calculations of DBC monomer and FTIR spectroscopy of PDBC films indicated that the polymerization mainly occurred at C(4) and C(5) positions). Fluorescent spectral studies indicated that PDBC was a blue light emitter. To the best of our knowledge, this is the first report on the electrodeposition of free-standing PDBC films.  相似文献   

7.
Direct anodic oxidation of 1,5-dihydroxynaphthalene (DHN), an important derivative of naphthalene, led to the formation of high-quality semiconducting poly(1,5-dihydroxynaphthalene) (PDHN) on stainless steel sheets in boron trifluoride diethyl etherate (BFEE). The onset oxidation potential of DHN in this medium was measured to be only 0.78 V vs. SCE, which was lower than that determined in traditional acetonitrile containing 0.1 mol/L tetrabutylammonium tetrafluoroborate (0.98 V vs. SCE). As-formed PDHN films showed good redox activity and stability, together with interesting electrochromic property from brown (doped) to yellow-green (dedoped). Structural characterization, including FTIR, 1H NMR, and quantum chemistry calculations, indicated that the polymerization of DHN probably occurred at C4 and C8 positions. Moreover, thermal analysis revealed that PDHN displayed better thermal stability than that synthesized by chemical method. The fluorescence spectral studies, together with the electrical tests, showed that PDHN was a good blue light-emitter (fluorescence quantum yield higher than 0.1) with an electrical conductivity of as high as 0.46 S/cm.  相似文献   

8.
π-Conjugated monomer, namely 2,8-bis-(4-octoxythiophen-2-yl)-dibenzothiophene (DBT-3OctTh), containing dibenzothiophene moiety as the central unit and 3-octoxythiophene as the external unit have been synthesized via Stille coupling reaction. The monomer was obtained as white powder in a yield of 75 %. Its electropolymerization was comparatively investigated in different media (dichloromethane (DCM), propylene carbonate (PC), or boron trifluoride diethyl etherate (BFEE)), all using Bu4NPF6 as the electrolyte. In BFEE, DBT-3OctTh revealed the lowest onset oxidation potential (0.67 V vs. Ag/AgCl) than DCM (1.12 V) and PC (1.13 V), leading to a facile electrodeposition to prepare poly(2,8-bis-(4-octoxythiophen-2-yl)-dibenzothiophene) (PDBT-3OctTh) with less possibility occurring on the side reactions. Doping level was calculated to be 0.32 in DCM, 0.12 in BFEE, and 0.04 in PC, respectively. The structure and performances of as-prepared polymers were systematically studied by cyclic voltammetry and spectroelectrochemistry. Spectroelectrochemical analysis revealed that PDBT-3OctTh films prepared in these media all switched light grey in the neutral state whereas blue in the oxidized state. Further, the existence of polaron or/and bipolaron in the oxidation process demonstrated that PDBT-3OctTh was p-dopable.  相似文献   

9.
Reaction of [Ag(CH3impy)2]PF6, 1, with Au(tht)Cl produces the monometallic Au(I)-species [Au(CH3impy)2]PF6, 2. Treatment of 2 with excess AgBF4 in acetonitrile, benzonitrile or benzylnitrile produces the polymeric species {[AuAg(CH3impy)2(L)](BF4)2}n, (L = CH3CN,3; L = C6H5CN, 4; L = C6H5CH2CN, 5) where the Au(I) centers remain bound to two carbene moieties while the Ag(I) centers are coordinated to two alternating pyridyl groups and a solvent molecule (L). Reaction of 2 with AgNO3 in acetonitrile produces the zig-zag mixed-metal polymer {[AuAg(CH3impy)2(NO3)]NO3}n, 6, that contains a coordinated nitrate ion in place of the coordinated solvent species. All of these polymeric materials are dynamic in solution and dissociate into their respective monometallic components. Compounds 26 are intensely luminescent in the solid-state and in frozen solution. All of these complexes were characterized by 1H, 13C NMR, electronic absorption and emission spectroscopy and elemental analysis.  相似文献   

10.
A novel semi-conducting polymer poly(9-bromophenanthrene) (P9BP) was synthesized electrochemically by direct anodic oxidation of it is monomer 9-bromophenanthrene (9BP) in boron trifluoride diethyl etherate (BFEE). The oxidation onset potential of 9BP in this medium was measured to be only 1.33 V vs. saturated calomel electrode (SCE). P9BP films obtained from BFEE showed good electrochemical behavior and nice thermal stability with electrical conductivity of 0.03 S cm−1. FTIR and 1H NMR spectra together with theoretical quantum chemistry calculations indicated that the P9BP was mainly grown via the coupling of the monomer at C3 and C6 positions. Furthermore, P9BP exhibited strong electrochromic nature from opaque green to light yellow between the doped and dedoped states on ITO electrode in solid state. Fluorescence spectral studies indicated that P9BP was a blue light emitter.  相似文献   

11.
(Arylimido)vanadium(V) complexes containing anionic ancillary donor ligands of type, V(NAr)Cl2(L) (Ar = 2,6-Me2C6H3, L = aryloxo, ketimide phenoxyimine, etc.) exhibited high catalytic activities for ethylene polymerization in the presence of Al cocatalyst; V(NAr)Cl2(O-2,6-Me2C6H3) showed the exceptionally high activities in the presence of halogenated Al alkyls such as Et2AlCl, EtAlCl2, etc. (Arylimido)vanadium(V)-alkylidene complexes, V(CHSiMe3)(NAr)(L′) (L′ = N=C t Bu2, O-2,6- i Pr2C6H3) exhibited the remarkable catalytic activities for ring-opening metathesis polymerization of norbornene. (Imido)vanadium(V) complexes containing the (2-anilidomethyl)pyridine ligand, V(NR)Cl2[2-Ar′NCH2(C5H4N)] (R = 1-adamantyl, cyclohexyl, phenyl, Ar′ = 2,6-Me2C6H3, 2,6- i Pr2C6H3), exhibit the remarkable activities for ethylene dimerization in the presence of MAO, affording 1-butene exclusively (selectivity 90.4 to >99%). The steric bulk of the imido ligand plays an important role in the selectivity, and the electronic nature directly affects the activity.  相似文献   

12.
Electrochemical properties of amorphous and crystalline V2O5 films, dip-coated from V-oxoisopropoxide sols and thermally treated at various temperatures (100, 150, 200 and 300°C), have been studied in extended potential range, i.e. from 1.4 to –1.6 V vs. Ag/AgCl in 1M LiClO4/propylen carbonate (PC) electrolyte. The formation of various lithiated (-, -, - and -Li x V2O5) phases was correlated with the values of insertion coefficient x obtained from cyclic voltammograms (CV) of crystalline V2O5 films (300°C). Reversible charging was observed when films were cycled up to –1.0 V vs. Ag/AgCl, while the extension of the potential to –1.3 V vs. Ag/AgCl change the CV of films irreversibly. Charging of crystalline V2O5 films was followed by the help of in-situ UV-visible spectroscopy, that revealed the intensity variations of the polaron absorption above 600 nm and the presence of the absorbing V3+ species between 550 and 650 nm. Ex-situ IR spectra of the crystalline films charged/discharged at –1.6V/1.4V vs. Ag/AgCl confirmed the amorphisation of the films' structure.  相似文献   

13.
A diiron hexacarbonyl complex containing bridging phenanthrene‐4,5‐dithiolate ligand is prepared by oxidative addition of Phenanthro[4,5‐cde][1,2]dithiin to Fe2(CO)9. The complex is investigated as a model for the active site of the [Fe–Fe] hydrogenase enzyme. The compound, [(μ‐PNT)Fe2(CO)6]; (PNT = phenanthrene‐4,5‐dithiolate), was characterized by spectroscopic methods (IR, UV/Vis and NMR) and X‐ray crystallography. The IR and proton NMR spectra of [(μ‐PNT)Fe2(CO)6] ( 4 ) are in agreement with a PNT ligand attached to a Fe2(CO)6 core. The infrared spectrum of 4 recorded in dichloromethane contains three peaks at 2001, 2040, and 2075 cm–1 corresponding to the stretching frequency of terminal metal carbonyls. X‐ray crystallographic study unequivocally confirms the structure of the complex having a butterfly shape with an Fe–Fe bond length of 2.5365 Å close to that of the enzyme (2.6 Å). Electrochemical properties of [(μ‐PNT)Fe2(CO)6] have been investigated by cyclic voltammetry. The cyclic voltammogram of [(μ‐PNT)Fe2(CO)6] recorded in acetonitrile contains one quasi‐irreversible reduction (E1/2 = –0.84 V vs. Ag/AgCl, Ipc/Ipa = 0.6, ΔEp = 131 V at 0.1 V · s–1) and one irreversible oxidation (Epa = 0.86 V vs. Ag/AgCl). The redox of [(μ‐PNT)Fe2(CO)6] at E1/2 = –0.84 V can be assigned to the one‐electron transfer processes; [FeI–FeI] → [FeI–Fe0] and [FeI–Fe0] → [FeI–FeI].  相似文献   

14.
Electrochemistry/mass spectrometry (EC/MS) using two different types of electrolytic cells was employed for the systematic mechanistic study of colchicine's reduction, both in aqueous and non-aqueous media. In aqueous media, at around − 1 V vs. Ag/AgCl, colchicine suffers a single-electron reduction to a transient anion radical, which after a follow-up protonation leads to a neutral free radical (ErCi mechanism). Depending on the experimental conditions, the latter undergoes some dimerization. At more negative potentials (− 1.4 V vs. Ag/AgCl) and pH < 7, the free radical is undergoing another single-electron reduction and a subsequent protonation. In the absence of protons (aprotic media), the one-electron reduction gives the anion radical. This process becomes fully reversible at high scan rates (≥ 10 V/s).  相似文献   

15.
Acetonitrile yields two oxidative peaks, first at ca. +0.30 and second at ca. +1.15 V vs. Ag/AgCl in cyclic voltammetry with platinum electrodes in 0.10 M methanesulfonic acid (MSA) containing 0.05–5 mM concentrations of acetonitrile. This electroactivity of the nitrile group was used for a direct detection of nitriles after their chromatographic separation. Three organic nitriles (acetonitrile, propionitrile and butanenitrile) were separated with an IonPac ICE-AS 1 column, eluted with 0.10 M MSA and detected on a platinum electrode via pulsed amperometric detection. Analytical performance was evaluated with a three potential waveform (+0.30 V, +1.15 V, −0.30 V vs. Ag/AgCl, current integration at +1.15 V). Numerical values of detection limits, linearity of calibration and reproducibility are reported for all three organic nitriles.  相似文献   

16.
The use of thin films of Prussian blue and heterogeneous Prussian blue membranes as potassium ion-selective electrodes was investigated. All of the heavier group I cations and NH+4 interfere strongly but there is relatively good selectivity towards Na+ with a selectivity coefficient of ca. 5 × 10?3. The thin-film measurements, based on Prussian blue deposited on platinum, involve conditioning the electrode to a fixed potential according to the method used by Engel and Grabner for copper hexacyanoferrate(III) films. The membrane electrodes were based on mixing Prussian blue with polymeric supporting films such as polystyrene and epoxy. A particularly simple practical configuration involves Prussian blue membranes deposited directly on copper conductors where one membrane serves as a reference electrode. A reversible cell, without liquid junction, is formed with Prussian blue and Ag/AgCl electrodes and this serves as a means for determining an accurate value for the standard reduction potential of Prussian blue, which is found to be 0.238 V vs. Ag/AgCl at 25 °C.  相似文献   

17.
A new binuclear complex of copper2+, [LCu2+(CH3COO)2Cu2+L](CH3COO)2 where L is N,N-bis(phthalimide)ethylenediamine, was synthesised and characterised. The complex ion [LCu2+ (CH3COO)2Cu2+L]2+ was encapsulated into ZSM-5 zeolite and used to modify the surface of the glassy carbon electrode. This modified electrode, in a phosphate buffer solution at pH 7.0, exhibited an oxidation potential for dopamine (DA) and ascorbic acid (AA) at electrode potentials of 0.230 V and ?0.090 V vs. Ag/AgCl respectively, a separation of 0.320 V. The electro-oxidation of DA or AA on the modified electrode is independent of each other. No interference was observed from Na+, K+, Cl?, SO 4 2? , Mg2+, Ca2+, Zn2+, Fe2+, and glucose. The detection limits obtained were 2.91 × 10?7 M for DA and 3.5 × 10?7 M for AA.  相似文献   

18.
A summary of the chemistry of the tetranuclear Au(I) amidinate complexes is presented. Tetranuclear Au(I) amidinate clusters are produced by the reaction of the sodium salt of a amidine ligand with the gold precursor Au(THT)Cl in a (1:1) stoichiometry. The structures of the tetranuclear Au4[ArNC(H)NAr]4, Ar = C6H4‐4‐OMe, C6H3‐3,5‐Cl, C6H4‐4‐Me, C6H4‐3‐CF3, C6F5, C10H7 and the tetranuclear Au4[(PhNC(Ph)NPh]4 and Au4[PhNC(CH3)NPh]4 have been characterized by X‐ray crystallography. The average Au···Au distance between adjacent Au(I) atoms is ?3.0 Å, typical of compounds having an aurophilic interaction. The four gold atoms are located at the corner of a rhomboid with the amidinate ligands bridged above and below the near plane of the four Au(I) atoms. The angles at Au···Au···Au in the cyclic units are between 70° and 116°. The tetranuclear gold(I) amidinate clusters each show different luminescence behavior. The tetranuclear clusters Au4[(ArNC(H)NAr]4, Ar = C6H4‐4‐OMe, Ar = C6H4‐3‐CF3, Ar = C6H4‐4‐Me and Ar = C6H4‐3,5‐Cl are the first tetranuclear gold(I) cluster species from group 11 elements that show fluorescence at room temperature. The tetranuclear naphthyl derivative Ar = C10H7 is luminescent only at 77 K. The pentafluorophenyl derivative Ar = C6F5 does not show any photoluminescence in the solid state nor in the solution. The lifetimes of the naphthyl and trifluoromethylphenyl complexes are in the millisecond range indicating phosphorescent processes. Electrochemical and chemical oxidation studies of the tetranuclear Au(I) amidinate clusters are presented. The tetranuclear complexes Au4[ArNC(H)NAr]4, Ar = C6H4‐4‐OMe, Ar = C6H4‐4‐Me, and Ar = C6H3‐3,5‐Cl, show three reversible waves at 0.75, 0.95, 1.09 V vs. Ag/AgCl at a scan rate of 500 mV/s in 0.1 M Bu4NPF6/CH2Cl2 at a Pt working electrode in CH2Cl2. Three reversible waves at 0.87, 1.19, 1.42 V vs. Ag/AgCl at a scan rate of 100 mV/s are also observed for the tetranuclear complex Au4[PhNC(Ph)NPh]4 in CH2Cl2. The pentafluorophenyl amidinate derivative, Au4[ArNC(H)NAr]4, Ar = C6F5 shows no oxidation wave below 1.8 V. Recently it has been shown that Au4[ArNC(H)NAr]4 is a very effective catalyst precursor for room temperature CO oxidation.  相似文献   

19.
The synthesis of a highly-strained cyclophane comprising azobenzene and methyl viologen units was achieved by coupling 3,3-dihydroxy-4,4-bipyridine with azobenzoic acid in CH2Cl2. The molecular structure, determined by single-crystal X-ray crystallography, shows that the azobenzene NN unit adopts the trans conformation and that the bipyridinium unit is twisted. The cyclic voltammogram recorded for the target compound displays an irreversible wave at −0.37 V vs Ag/AgCl, associated with the one-electron reduction of the bipyridinium subunit. A further wave is seen at E1/2 = −1.52 V versus Ag/AgCl and is assigned to one-electron reduction of the azobenzene group. Visible light illumination of the azobenzene chromophore in CH3CN triggers trans to cis isomerization but the process is irreversible.  相似文献   

20.
Investigation has been conducted on the poisoning effect of various contaminants containing chlorine at ppm level (<10 ppm) on the performance of Ni-YSZ anode-supported solid oxide fuel cells. The results indicate that cell performance drops by exposure to 1 ppm Cl2(g) at 750 °C, whereas the introduction of Cl2(g) with concentration higher than 5 ppm causes only a slight degradation at 850 °C. The presence of 2–6 ppm CH3Cl(g) and C2H3Cl(g) can also induce measurable cell performance decline at 750 and 850 °C and this deterioration cannot be completely removed after switching to pure fuel at 850 °C. No performance loss is found when the cell is operated in fuel containing 1–8 ppm HCl(g) at 750 and 850 °C. It is thus concluded that chlorine in the form of Cl2(g) yields the largest poisoning effect at 750 °C, while the degradation rate caused by addition of C2H3Cl(g) increases with the increase of operation temperature. Agglomerations at anodic region are observed in the samples after poisoning test by Cl2(g), CH3Cl(g), and C2H3Cl(g), but the anode microstructure is uniform for the sample exposed to HCl(g) for poisoning test.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号